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Abstract
1.	 A	high	level	of	variation	of	biodiversity	recovery	within	a	landscape	during	forest	
restoration	presents	obstacles	to	ensure	large-scale,	cost-effective	and	long-last-
ing	ecological	restoration.	There	is	an	urgent	need	to	predict	landscape	variation	
in	forest	restoration	success	at	a	global	scale.

2.	 We	conducted	a	meta-analysis	comprising	135	study	 landscapes	to	predict	and	
map	 landscape	variation	 in	 forest	 restoration	success	 in	tropical	and	temperate	
forest	 biomes.	Our	 analysis	was	based	on	 the	 amount	of	 forest	 cover	within	 a	
landscape	—	a	key	driver	of	 forest	 restoration	 success.	We	contrasted	17	gen-
eralized	 linear	models	measuring	 forest	cover	at	different	 landscape	sizes	 (with	
buffers	varying	from	5	to	200	km	radii).	We	identified	the	most	plausible	model	
to	 predict	 and	map	 landscape	 variation	 in	 forest	 restoration	 success.	We	 then	
weighted	landscape	variation	by	the	amount	of	potentially	restorable	areas	(agri-
culture	and	pasture	land	areas)	within	the	same	landscape.	Finally,	we	estimated	
restoration	costs	of	implementing	Bonn	Challenge	commitments	in	three	specific	
temperate	and	tropical	forest	biome	types	in	the	United	States,	Brazil	and	Uganda.

3.	 Landscape	variation	decreased	exponentially	 as	 the	amount	of	 forest	 cover	 in-
creased	in	the	landscape,	with	stronger	effects	within	a	5	km	radius.	Thirty-eight	
per	cent	of	forest	biomes	have	landscapes	with	more	than	27%	of	forest	cover	and	
showed	levels	of	landscape	variation	below	10%.	Landscapes	with	less	than	6%	of	
forest	cover	showed	levels	of	variation	in	forest	restoration	success	above	50%.

4.	 At	the	biome	level,	Tropical	and	Subtropical	Moist	Broadleaf	Forests	had	the	low-
est	(12.6%),	whereas	Tropical	and	Subtropical	Dry	Broadleaf	Forests	had	the	high-
est	(22.9%)	average	of	weighted	landscape	variation	in	forest	restoration	success.	
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1  | INTRODUC TION

Given	 high	 levels	 of	 deforestation	 and	 degradation	 of	 previously	
forested	lands	worldwide,	together	with	serious	threats	from	global	
climate	change,	several	international	and	country-led	efforts	aim	to	
boost	 forest	 and	 landscape	 restoration.	 To	 date,	 over	 59	 commit-
ments	have	been	pledged	to	restore	170	M	ha	of	deforested	lands	by	
2030	under	international	initiatives	such	as	the	Bonn	Challenge	and	
the	New	York	Declaration	on	Forests	(Chazdon	et	al.,	2017).	These	
initiatives	are	supported	by	national	governments,	investors,	devel-
opment	banks,	and	bilateral	and	multilateral	funders	(Brancalion	et	
al.,	2017).	They	will	require	an	estimated	US$18–300	billion	per	year	
to	be	implemented	(Ding	et	al.,	2017).	It	is	not	clear	how	and	when	
these	funds	will	be	available	 to	 restoration	 initiatives,	but	consen-
sus	exists	that	each	dollar	invested	in	restoration	needs	to	be	spent	
in	the	most	ecologically	and	economically	efficient	way	(Ding	et	al.,	
2017;	Verdone	&	Seidl,	2017).

The	 cost-effectiveness	 of	 restoration	 (e.g.	 actions	 generating	
greatest	socio-ecological	benefit	per	unit	of	opportunity	and/or	im-
plementation	 cost)	 can	 differ	widely	 among	 restoration	 initiatives	
(Birch	et	al.,	2010;	Molin,	Chazdon,	Ferraz,	&	Brancalion,	2018)	and	
methods	 (Brancalion,	 Campoe,	 et	 al.,	 2019).	 Measured	 outcomes	
can	 range	 from	 near-total	 success	 in	 achieving	 specific	 targets	 to	
complete	 failure	 (Crouzeilles,	 Curran,	 et	 al.,	 2016).	 Outcomes	 are	
strongly	influenced	by	spatial	variation	in	the	ecological,	biophysical	
and	socio-economic	characteristics	of	landscapes	where	forest	res-
toration	is	 implemented	(Crouzeilles	et	al.,	2017;	Meli	et	al.,	2017).	
Investors	 operating	 in	 different	 businesses	 usually	 avoid	 high-risk	
transactions,	which	likely	constrains	the	flow	of	financial	resources	
to	 restoration	 initiatives	 perceived	 as	 financially	 risky	 (Ding	 et	 al.,	
2017).	Thus,	the	high	level	of	unpredictability	in	biodiversity	recov-
ery	 in	 forests	 undergoing	 restoration	 (hereafter	 restoring	 forests)	
increases	the	risks	associated	with	investments	in	ecological	resto-
ration	programmes.	This	high	level	of	unpredictability	can	constrain	
both	 long-term	 ecological	 sustainability	 and	 functionality,	 and	 ex-
pected	multiple	benefits	of	restoration	for	biodiversity,	ecosystem	
services,	and	human	well-being.

Here,	we	develop	a	new	approach	to	predict	and	map	landscape	
variation	 in	 forest	 restoration	 success	 in	 tropical	 and	 temperate	
forest	 biomes.	 Landscape	 variation	 emerges	 from	 comparisons	 of	
values	 of	 biodiversity	 recovery	 (measured	 through	 multiple	 eco-
logical	metrics	 for	 different	 taxonomic	 groups)	 between	 restoring	
and	reference	forests	within	different	sampling	sites	in	a	landscape.	
Thus,	our	 approach	was	developed	by	 conducting	a	meta-analysis	
on	 biodiversity	 recovery	 (e.g.	 Crouzeilles,	 Curran,	 et	 al.,	 2016)	 for	
developing	 spatially	 explicit	maps	 that	 predict	 landscape	 variation	
in	forest	restoration	success	based	on	ecological	and/or	socio-eco-
nomic	factors.	Our	map	identifies	landscapes	in	previously	forested	
lands	where	restoration	 is	most	 likely	 to	foster	biodiversity	 recov-
ery	towards	levels	typical	of	reference	forest	ecosystems.	Our	novel	
analysis	opens	new	opportunities	for	policy-makers,	entrepreneurs,	
practitioners	and	researchers	 to	 (a)	establish	 forest	 landscape	res-
toration	 targets	 and	 identify	 cost-effective	 priority	 areas	 for	 res-
toration,	 (b)	 improve	 regulations	 for	biodiversity	offsetting	 and	 (c)	
estimate	implementation	costs	of	forest	restoration	at	a	global	scale.	
An	important	aspect	of	such	an	approach	is	estimating	the	effects	
of	key	ecological	and/or	socio-economic	factors	affecting	landscape	
variation	and	predicting	them	at	a	global	scale.

The	amount	of	forest	cover	within	a	landscape	is	easily	measured	
using	global	 land	cover	databases,	and	 it	 is	a	key	ecological	driver	
of	 the	 forest	 restoration	 processes	 (reviewed	 by	 Leite,	 Tambosi,	
Romitelli,	&	Metzger,	2013).	Forest	cover	can	act	both	as	a	source	of	
seeds	for	re-colonization	of	native	plant	species	and	as	a	provider	of	
critical	habitat	for	seed	dispersing	animals	(Chazdon,	2003;	Helmer,	
Brandeis,	Lugo,	&	Kennaway,	2008).	Previous	studies	revealed	that	
biodiversity	 recovery	 in	 restoring	 forests	 varies	 substantially	 de-
pending	on	the	amount	of	forest	cover	in	the	landscape	(Crouzeilles	
&	Curran,	2016).	Therefore,	such	relationship	could	be	used	to	map	
variation	in	forest	restoration	success	of	other	landscapes.

We	propose	a	new	conceptual	model	for	the	expected	relation-
ship	between	the	amount	of	forest	cover	 in	a	 landscape	and	 land-
scape	 variation	 in	 forest	 restoration	 success	 (Figure	 1).	 That	 is,	 in	
some	landscapes,	restoring	forests	are	similar	to	the	reference	for-
ests	in	terms	of	the	levels	of	biodiversity	supported	(Klanderud	et	al.,	

Our	 approach	 can	 lead	 to	 a	 reduction	 in	 implementation	 costs	 for	 each	 Bonn	
Challenge	commitment	between	US$	973	Mi	and	9.9	Bi.

5.	 Policy implications.	Our	approach	identifies	landscape	characteristics	that	increase	
the	likelihood	of	biodiversity	recovery	during	forest	restoration	—	and	potentially	
the	 chances	of	 natural	 regeneration	 and	 long-term	ecological	 sustainability	 and	
functionality.	Identifying	areas	with	low	levels	of	landscape	variation	can	help	to	
reduce	the	risks	and	financial	costs	associated	with	implementing	ambitious	resto-
ration	commitments.
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2010;	implying	low	variation).	In	contrast,	other	landscapes	exhibit	
high	 levels	of	variation	 in	biodiversity	recovery	 (Clarke,	Rostant,	&	
Racey,	2005;	whereby	 the	magnitude	or	even	direction	of	 the	dif-
ference	between	restoring	and	reference	forests	is	highly	variable).	
Increasing	variance	in	biodiversity	recovery,	in	relation	to	reference	
conditions	 associated	with	 highly	 deforested	 landscapes,	 tends	 to	
occur	due	to	the	(a)	mixing	of	early	and	late	successional	species	and	
non-native	species,	(b)	potential	local	extinction	of	late	successional	
species	and	(c)	lack	of	dispersal	of	species	or	propagules	into	restor-
ing	forests	(e.g.	Crouzeilles	&	Curran,	2016;	Holl	&	Aide,	2011).

In	this	study,	based	on	a	meta-analysis	for	tropical	and	temperate	
forest	biomes	and	comprising	135	 landscapes,	we	asked,	At which 
scale of effect does forest cover best predict the variation in restoration 
success within a landscape?	We	 used	 this	 result	 to	map	 landscape	
variation	 in	 forest	 restoration	 success	 in	 tropical	 and	 temperate	
forest	biomes.	We	also	asked,	How does landscape variation change 
across major forest biomes and across countries?	We	used	the	map	of	
landscape	 variation	 in	 forest	 restoration	 success,	 combined	 with	
data	on	per	ha	forest	implementation	costs	and	opportunity	costs,	
to	estimate	restoration	costs	of	implementing	Bonn	Challenge	com-
mitments.	We	 focused	our	estimates	on	 three	 forest	biome	 types	
and	countries	where	 restoration	 implementation	costs	were	avail-
able:	15	M	ha	from	USA	in	Temperate	Broadleaf	and	Mixed	Forests	
and	 Temperate	 Coniferous	 Forests,	 1	M	 ha	 from	 Brazil's	 Atlantic	
Forest	Restoration	Pact	in	Tropical	and	Subtropical	Moist	Broadleaf	
Forests,	 and	1	M	ha	 from	Uganda	 in	Tropical	and	Subtropical	Dry	
Broadleaf	 Forests.	 By	 identifying	 landscapes	with	 low	 variance	 in	

forest	restoration	success,	our	approach	may	assist	in	reducing	the	
risks	of	 failure	 in	 large-scale	 ecological	 forest	 restoration	projects	
and	facilitate	the	flow	of	financial	investments	needed	to	implement	
the	ambitious	restoration	commitments	planned	at	a	global	scale.

2  | MATERIAL S AND METHODS

2.1 | Forest restoration database

Crouzeilles,	 Ferreira,	 and	 Curran	 (2016)	 built	 an	 extensive	 forest	
restoration	database	encompassing	269	original	studies	across	221	
study	landscapes	(based	on	the	geographic	coordinates	reported	by	
the	original	studies)	and	which	contains	4,645	quantitative	compari-
sons	 between	 reference	 forests	 and	 degraded	 systems	 or	 restor-
ing	forests	for	biodiversity	and	vegetation	structure.	They	defined	
reference	forests	as	old-growth	or	 less	disturbed	forest;	degraded	
systems	as	different	types	of	human	land	use	(e.g.	plantation	or	ag-
riculture);	restoring	forests	as	passively	or	actively	restoring	native	
and	non-native	forests	in	their	initial	or	secondary	stage	of	succes-
sion;	biodiversity	as	plants,	mammals,	birds,	herpetofauna	and	inver-
tebrates	measured	through	ecological	metrics	(abundance,	richness,	
diversity	or	 similarity);	 and	vegetation	 structure	 (cover,	 litter,	den-
sity,	height	and	biomass).

From	 this	 database,	we	 selected	 original	 studies	 that	 included	
comparisons	between	reference	and	restoring	forests	for	biodiver-
sity	and	information	on	the	time	since	restoration	started.	We	used	
the	 last	 criterion	 to	 investigate	whether	our	 results	were	affected	
by	the	time	since	restoration	started.	 In	total,	our	analysis	encom-
passed	135	study	landscapes	(Figure	2)	and	contained	2,063	quanti-
tative	comparisons	between	reference	and	restoring	forests	for	the	
recovery	of	biodiversity	(29.8%	of	the	comparisons	for	birds,	29.2%	
for	 invertebrates,	 24.2%	 for	 plants,	 12.9%	 for	mammals	 and	3.9%	
for	 herpetofauna).	Data	on	 species	 richness	 (39%)	 and	 abundance	
(37%)	were	more	frequent	than	for	species	diversity	and	similarity	
(12%	each),	which	are	more	sensitive	ecological	metrics	to	measure	
changes	 in	community	composition.	Most	of	 the	study	 landscapes	
(79%)	 were	 located	 in	 Tropical	 and	 Subtropical	 Moist	 Broadleaf	
Forests	 (Figure	 2),	 but	we	mapped	 the	 landscape	 variation	 in	 for-
est	 restoration	success	across	all	 forest	biomes.	This	was	because	
Crouzeilles,	Curran,	et	al.	 (2016)	 found	no	significant	geographical	
variation	in	predictors	of	forest	restoration	success.

2.2 | Forest cover dataset

Crouzeilles	and	Curran	(2016)	built	a	forest	cover	data	layer	based	on	
the	recent	1	km	resolution	consensus	land	cover	dataset,	derived	from	
combining	three	existing	land	cover	products	(GLC	2000,	MODIS	2005	
and	ESA	GlobCover	2008;	Tuanmu	&	Jetz,	2014).	This	‘reduced’	data-
set	avoids	the	influence	of	pre-2000	deforestation	(product	DISCover	
from	1995)	and	includes	three	land	cover	classes	(evergreen/deciduous	
needleleaf	trees,	evergreen	broadleaf	trees	and	deciduous	broadleaf	
trees)	to	represent	the	extent	of	forest	vegetation	within	landscapes	as	
robustly	as	possible.	From	this	database,	we	calculated	the	percentage	

F I G U R E  1  Conceptual	model	showing	the	expected	relationship	
between	the	amount	of	forest	cover	(%)	in	a	landscape	and	
variation	in	forest	restoration	success.	Landscape	variation	in	
forest	restoration	success	is	defined	as	the	variation	of	biodiversity	
recovery	in	relation	to	the	values	found	in	the	reference	condition.	
Low	variation	occurs	when	restoring	forests	are	consistently	
similar	in	the	levels	of	biodiversity	supported	compared	to	the	
reference	forests,	whereas	large	variance	in	biodiversity	recovery	
is	associated	with	highly	deforested	landscapes	and	tends	to	
occur	due	to	the	mixing	of	early	and	late	successional	species	and	
non-native	species,	extinction	of	late	successional	species	and	lack	
of	dispersers.	The	blue	line	represents	the	expected	relationship	
between	x	and	y	variables	and	the	grey	area	represents	the	
confidence	interval	which	tends	to	decrease	for	higher	values	of	
the	amount	of	forest	cover.
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of	 overall	 and	 continuous	 forest	 cover	within	 eight	 different	 buffer	
sizes	(with	5,	10,	25,	50,	75,	100,	150	and	200	km	of	radius)	for	the	same	
study	landscapes	reported	in	the	forest	restoration	database.	Overall	
forest	cover	 includes	all	 forest	 remnants	≥9	ha,	whereas	continuous	
forest	cover	includes	only	1	km	pixels	with	a	minimum	percentage	of	
60%	of	forest	cover.	The	lowest	buffer	size	was	5	km	radius	because	
the	median	distance	between	sites	within	a	study	landscape	was	5	to	
3	km	(M.	Curran,	unpublished	data),	whereas	the	largest	buffer	size	is	
two	orders	of	magnitude	bigger	than	the	lowest,	following	the	recom-
mendations	of	Jackson	and	Fahrig	(2015).

2.3 | Response ratio variation

We	 used	 response	 ratios	 (RR;	 Hedges,	 Gurevitch,	 &	 Curtis,	 1999)	 to	
measure	 the	 standardized	mean	 effect	 size	 of	 comparisons	 between	
restoring	and	reference	forests	within	the	same	study	(such	as	a	con-
trol–treatment	experiment;	Equation	1).	Multiple	RRs	can	be	calculated	
within	the	same	study	landscape	(e.g.	multiple	ecological	metrics	for	dif-
ferent	taxonomic	groups	within	different	sampling	sites),	but	the	amount	
of	forest	cover	is	the	same	within	a	given	study	landscape	(for	a	given	
buffer	size).	Therefore,	we	developed	an	equation	to	estimate	landscape	
variation	in	biodiversity	recovery	(measured	through	multiple	response	
ratios	within	a	landscape)	relative	to	the	‘full’	restoration	success	within	
each	study	landscape	(defined	as	landscape variation in forest restoration 
success; LVFRS).	We	calculated	the	difference	between	each	measured	
RR	for	each	taxonomic	group	(hereafter	RRm,t)	 in	relation	to	the	RR	of	
the	‘full	forest	restoration	success’	(RRfrs;	which	is	obtained	when	restor-
ing	forests	are	equal	to	reference	forests	in	terms	of	biodiversity	value,	
hence	RRfrs	=	0)	within	the	same	study	landscape	(Equation	2):

where	RRm,t	is	each	measured	response	ratio,	 x̄	is	the	mean	value	for	
a	quantified	ecological	metric	 for	biodiversity	within	all	 sampling	 lo-
cations	of	an	original	study	representing	either	restoring	or	reference	
forests,	RRfrs	is	the	response	ratio	when	both	restoring	and	reference	
forests	have	the	same	quantitative	value	for	biodiversity	(RRfrs	=	0),	n 
is	the	number	of	response	ratios	within	a	study	landscape,	and	RRV	is	
the	variance	of	RRm,t	around	the	RRfrs. RRV	depends	upon	the	amount	
of	forest	cover	in	the	landscape	and	it	ranges	from	zero	to	positive	val-
ues.	Values	close	to	zero	are	the	desired	outcome	of	restoration	proj-
ects,	that	is,	there	is	low	variation	of	restoration	outcomes	in	bringing	
biodiversity	in	a	restoring	forest	back	to	the	reference	system	state.	To	
avoid	extreme	RRs	that	may	affect	modelling	of	RRV,	we	removed	the	
highest	and	lowest	0.25%	RR	values	from	our	database,	which	corre-
sponds	to	RRs > 0.4 and RRs	<	−0.4,	totalling	11	RRs.

2.4 | Model selection

We	used	an	 information	 theoretic	 approach	 (Akaike	 Information	
Criterion;	 Burnham	 &	 Anderson,	 2002)	 to	 identify	 the	 buffer	
size	within	which	 the	percentage	of	overall	or	 contiguous	 forest	
cover	 best	 predicted	 landscape	 variation	 in	 forest	 restoration	
success.	We	compared	17	generalized	 linear	models,	with	buffer	

(1)RRm= ln

(
x̄restored

x̄reference

)

(2)RRV=

n∑
i=1

(
RRm−RRfrs

)2
n−1

F I G U R E  2  Map	of	135	study	landscapes	across	the	five	originally	forested	biomes.	Study	landscapes	are	represented	by	red	dots.
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size	 varying	 from	 5	 to	 200	 km	 (5,	 10,	 25,	 50,	 75,	 100,	 150	 and	
200	km	radius)	and	with	data	on	either	continuous	or	overall	for-
est	cover,	plus	a	null	model.	We	modelled	 landscape	variation	 in	
forest	 restoration	success	assuming	a	gamma	distribution	where	
the	 values	 were	 continuous	 and	 varying	 between	 0	 and	 posi-
tive	 infinite	 (Bolker,	2008).	We	 log-transformed	 the	percentages	
of	 overall	 and	 contiguous	 forest	 cover	 following	Crouzeilles	 and	
Curran	 (2016)	 because	 these	 could	 be	 non-linearly	 related	with	
landscape	 variation	 in	 forest	 restoration	 success.	 We	 avoided	
pseudo-spatial-auto-correlation	using	only	one	value	of	landscape	
variance	per	study	landscape.	For	each	model,	we	calculated	the	
Akaike	 Information	Criterion	 corrected	 for	 small	 samples	 (AICc),	
the	ΔAICc	as	AICci	−	minimum	AICc,	and	the	Akaike	weight	 (wi),	
which	indicates	the	probability	that	the	model	i	is	the	best	model	
within	the	set.	Finally,	we	also	calculated	an	evidence	ratio,	which	
was	used	to	compare	the	model's	relative	goodness	of	fit	 (w1/wj,	
where	model	1	is	the	estimated	best	model	and	j	indexes	the	rest	
of	the	models	in	the	set;	Burnham	&	Anderson,	2002).	Models	with	
ΔAICci	<	2	can	be	considered	equally	plausible,	but	we	considered	
the	top-ranked	model	only	 (i.e.	 lowest	AICc	and	highest	wi).	This	
was	because	we	were	interested	in	the	model	that	best	explained	
landscape	variation	in	forest	restoration	success.

Many	factors	(e.g.	climate	and	land	use	change)	may	affect	land-
scape	 variation	 in	 forest	 restoration	 effectiveness	 for	 biodiversity	
(Spake	&	Doncaster,	2017),	but	the	effects	of	such	factors	on	land-
scape	 variation	 have	 not	 previously	 been	 studied.	 We	 therefore	
focused	on	the	strong	and	recognized	relationship	between	forest	
cover	 and	 landscape	 variation	 in	 forest	 restoration	 success	 (e.g.	
Crouzeilles	&	Curran,	2016).	However,	we	also	investigated	whether	
landscape	 variation	 in	 forest	 restoration	 success	 was	 affected	 by	
either	the	number	of	response	ratios	within	a	study	landscape	(i.e.	
number	 of	 comparisons	 between	 restoring	 and	 reference	 forests	
for	biodiversity)	or	the	time	since	restoration	started	using	Pearson	
regressions.	We	 did	 not	 include	 both	 the	 number	 of	 response	 ra-
tios	 and	 the	 time	 since	 restoration	 started	 in	 the	model	 selection	
because	we	aimed	to	build	a	spatially	explicit	predictive	model,	that	
is,	we	needed	to	work	only	with	variables	that	were	predictable	in	
space,	which	 does	 not	 apply	 to	 sample	 size	 and	 time	 since	 resto-
ration	started.

2.5 | Mapping landscape variation in forest 
restoration success in tropical and temperate 
forest biomes

To	define	our	study	area,	we	considered	only	tropical	and	temperate	
forest	biomes,	based	on	a	geospatial	dataset	(Dinerstein	et	al.,	2017).	
We	 then	used	 the	updated	version	 (2016)	of	 the	geospatial	 dataset	
from	the	21st-century	forest	cover	change	between	2000	and	2012	
(Hansen	 et	 al.,	 2013;	 updated	 version	 is	 available	 at	 Global	 Forest	
Watch,	2016)	 to	map	 forested	and	non-forested	areas.	This	dataset	
contains	 information	on	the	amount	of	vegetation	taller	than	5	m	in	
height	within	each	30	m	pixel	for	the	year	2000,	as	well	as	pixels	sub-
ject	to	forest	loss	between	2001	and	2016.	To	obtain	values	for	forest	

cover	in	2016,	we	excluded	forest	loss	pixels	between	2001	and	2016	
from	the	 forest	cover	map	of	2000.	We	resampled	the	 forest	cover	
map	of	2016	to	1	km	pixel	size,	the	same	resolution	of	the	forest	cover	
dataset	from	Crouzeilles	and	Curran	(2016).	That	is,	the	amount	of	tree	
canopy	cover	within	a	1	km	pixel	size	was	the	mean	of	the	tree	canopy	
cover	of	all	the	30	m	pixels	that	fell	within	the	1	km	pixel.

We	masked	non-restorable	areas	within	the	forest	biomes.	We	
considered	non-restorable	areas	to	be	1	km	pixels	with	100%	of	tree	
canopy	 cover,	 urban	 areas,	water	 bodies	 as	well	 as	 locations	 that	
were	not	previously	forested	(e.g.	grasslands).	We	obtained	data	on	
1	km	pixels	with	100%	tree	canopy	cover	from	the	forest	cover	map	
in	2016.	We	obtained	data	on	urban	areas	and	water	bodies	 from	
the	 global	 CCI-LC	map	 (ESA	Climate	Change	 Initiative,	 2017).	We	
also	considered	wetlands	as	non-restorable	places	because	the	res-
toration	of	wetlands	demands	different	kinds	of	management	than	
examined	in	this	study.	We	obtained	data	on	wetlands	from	GIEMS-
D15	 (Fluet-Chouinard,	 Lehner,	 Rebelo,	 Papa,	 &	 Hamiton,	 2015;	
Prigent,	Papa,	Rossow,	&	Matthews,	2017).

We	used	 the	best	 fitting	model	 from	 the	model	 selection	 (see	
the	Results	section)	to	map	landscape	variation	in	forest	restoration	
success	(LVFRS).	Thus,	we	calculated	the	percentage	of	forest	cover	
surrounding	each	1	km	focal	pixel	within	a	buffer	size	of	5	km	radius	
and	then	applied	the	global	equation	for	each	potential	pixel	to	be	
restored,	and	the	equations	is	as	follows	(Equation	3):

where	the	buffer	size	of	5	km	radius	was	the	top-ranked	model	to	
predict	the	effects	of	percentage	of	forest	cover	on	landscape	varia-
tion	in	forest	restoration	success.	Finally,	we	standardized	landscape	
variation	 in	 forest	 landscape	 restoration	 success	 (SLVFRS)	 to	 vary	
between	 0%	 (minimum	 variation)	 and	 100%	 (maximum	 variation;	
Equation	4):

When	landscape	variation	is	100%,	it	means	that	restoration	suc-
cess	for	biodiversity	is	highly	variable	(i.e.	unpredictable).

2.6 | Bonn challenge commitments as a case study

We	used	three	Bonn	Challenge	commitments	to	show	how	our	ap-
proach	can	be	used	to	estimate	implementation	costs	of	forest	res-
toration	in	different	types	of	forest	biomes.	These	are	as	follows:	
15	M	ha	from	USA	in	Temperate	Broadleaf	and	Mixed	Forests	and	
Temperate	Coniferous	Forests,	1	M	ha	from	Brazil's	Atlantic	Forest	
Restoration	 Pact	 in	 Tropical	 and	 Subtropical	 Moist	 Broadleaf	
Forests,	and	1	M	ha	from	Uganda	in	Tropical	and	Subtropical	Dry	
Broadleaf	Forests.	Uganda	committed	2.5	M	ha	of	three	types	of	
native	vegetation	(forests,	savannahs	and	grasslands)	for	restora-
tion,	but	the	largest	areas	are	for	forest	restoration.	We	assumed	

(3)

LVFRS=1.37595−0.23498∗

lognatural

⎛
⎜⎜⎝

%overall forest cover with a

buffer of 5km radius+1

⎞
⎟⎟⎠

(4)SLVFRS=
LVFRS−LVFRSmin

LVFRSmax−LVFRSmin

∗100
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at	 least	1	M	ha	of	 forests	as	our	targeted	area	for	restoration	 in	
Uganda.

To	 estimate	 the	 total	 implementation	 cost	 of	 each	 commit-
ment,	we	made	the	following	assumptions:	(a)	implementation	cost	
is	linearly	positively	related	with	the	landscape	variation	in	forest	
restoration	 success	 (i.e.	 restoration	 is	 more	 expensive	 in	 land-
scapes	with	higher	variation	 in	 forest	 restoration	 success	—	 this	
is	a	potential	surrogate	of	the	lower	chances	of	natural	regenera-
tion	and	long-term	ecological	sustainability	and	functionality;	e.g.	
Strassburg	et	al.,	2019)	and	(b)	the	total	restoration	area	pledged	
will	 be	 implemented	 within	 landscapes	 with	 either	 the	 lowest	
landscape	variation	or	the	lowest	opportunity	costs.	Thus,	imple-
mentation	cost	was	estimated	using	(Equation	5):

where	SLVFRS	is	the	standardized	landscape	variation,	and	full	tree	
planting	cost	represents	the	most	expensive	method	for	active	res-
toration.	 Implementation	 cost	 will	 be	 higher	 when	 the	 SLVFRS	 is	
lower.	The	per	ha	full	 tree	planting	cost	was	estimated	to	be	 (US$	
mean	±	 standard	 deviation):	 677	±	363	 in	USA	 (Crawford	County	
Conservation	Districts,	 2007;	Stringer,	2009;	Virginia	Department	
of	 Forestry,	 2018),	 3,504	 ±	 915	 in	 the	 Brazilian	 Atlantic	 Forest	
(Benini	 &	 Adeodato,	 2017;	 Serviço	 Florestal	 Brasileiro,	 2017)	 and	
1,179	 ±	 439	 in	Uganda	 (Ministry	 of	Water	 &	 Environment,	 2016;	
Omeja	et	al.,	2011;	Omeja,	Obua,	Rwetsiba,	&	Chapman,	2012).

We	 estimated	 the	 reduced	 implementation	 cost	 of	 prioritiz-
ing	 natural	 regeneration	 when	 SLVFRS	 is	 low	 compared	 to	 the	
cost	 of	 implementing	 only	 full	 tree	 planting	 as	 the	 restoration	
method	used	to	reach	each	target	committed.	We	also	estimated	
the	total	opportunity	cost	for	each	commitment	when	identifying	
landscapes	with	 either	 the	 lowest	 landscape	 variation	 or	 lowest	
opportunity	 costs.	Opportunity	 cost	 represents	 the	 cost	 of	 set-
ting	 aside	 land	 for	 restoration	 instead	 of	 using	 it	 for	 other	 pur-
poses.	We	calculated	total	opportunity	cost	based	on	Naidoo	and	
Iwamura	(2007).

3  | RESULTS

3.1 | At which scale of effect does forest cover best 
predict the variation in restoration success within a 
landscape?

Our	top-ranked	model	explaining	landscape	variation	in	forest	res-
toration	 success	 included	 the	 percentage	 of	 overall	 forest	 cover	
measured	at	a	buffer	size	of	5	km	(wi	=	0.4;	Table	1	and	Figure	3).	
The	second-ranked	model,	which	included	the	percentage	of	overall	
forest	cover	measured	at	a	buffer	size	of	10	km	radius,	was	equally	
plausible	(ΔAICci	=	1.09,	wi	=	0.23).	The	evidence	ratio	of	the	top-
ranked	model	was	only	1.74	 times	higher	 than	 the	 second-ranked	
model,	 but	400	 times	higher	 than	 the	null	model,	 highlighting	 the	
importance	of	forest	cover	in	explaining	landscape	variation	in	for-
est	restoration	success	(Table	1).	We	selected	the	top-ranked	model	
to	build	the	map	of	landscape	variation	in	forest	restoration	success	

(Table	1).	 If	 the	 second-ranked	model	was	used,	we	would	expect	
similar	results,	as	variables	included	in	the	top-ranked	and	second-
ranked	models	(percentage	of	forest	cover	at	5	km	and	10	km	radius,	

(5)Inplementation cost=SLVFRS∗US$ full tree planting cost

TA B L E  1  Performance	of	17	models	predicting	the	landscape	
variation	in	forest	restoration	success

Model AICc ΔAICc wi

Overall	5	km 206.33 0.00 0.40

Overall	10	km 207.42 1.09 0.23

Continuous	200	km 208.63 2.30 0.13

Overall	25	km 209.62 3.29 0.08

Continuous	150	km 209.7 3.38 0.07

Continuous	100	km 211.56 5.23 0.03

Overall	50	km 211.89 5.57 0.02

Continuous	75	km 213.88 7.55 0.01

Overall	75	km 214.51 8.18 0.01

Overall	100	km 215.95 9.63 0.00

Continuous	50	km 216.23 9.90 0.00

Continuous	25	km 216.92 10.59 0.00

Null 217.79 11.47 0.00

Continuous	10	km 218.31 11.98 0.00

Overall	150	km 219.25 12.92 0.00

Continuous	5	km 219.62 13.29 0.00

Overall	200	km 219.88 13.55 0.00

Note: Overall	=	percentage	of	overall	forest	cover,	Continuous	=	per-
centage	of	continuous	forest	cover,	km	=	km	radius.	A	null	model	was	
also	included	for	comparison.	AICc	=	Akaike	Information	Criterion	
corrected	for	small	ratio	of	sample	size/number	of	parameters,	
ΔAICc	=	AICc	−	minimum	AICc,	wi	=	Akaike	weight.

F I G U R E  3  Relationship	between	landscape	variation	in	forest	
restoration	success	for	biodiversity	and	percentage	of	overall	
forest	cover	measured	at	a	buffer	size	of	5	km	radius	(x-axis)	for	
biodiversity.	Points	represent	variation	in	forest	restoration	success	
obtained	from	all	response	ratios	at	each	study	landscape.	Blue	
line	=	mean	value	and	grey	line	=	95%	confidence	intervals.
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respectively)	were	98%	correlated.	We	found	that	landscape	varia-
tion	in	forest	restoration	success	was	neither	affected	by	the	sam-
ple	size	(Pearson's	r	=	.11,	p	=	.19)	nor	by	the	time	since	restoration	
started	(Pearson's	r	=	−.02,	p	=	.85).

3.2 | How landscape variation change across major 
global forest biomes and across countries?

Landscape	 variation	 in	 forest	 restoration	 success	 ranged	 from	 <1	
to	85%	 (0%	=	minimum	variation	and	100%	=	maximum	variation;	
Figure	4).	Landscapes	(1	×	1	km	pixel)	with	more	than	27%	of	forest	
cover	 showed	 low	 levels	 of	 variation	 in	 forest	 restoration	 success	
(below	10%).	Below	this	 threshold	 level	of	 forest	cover,	 landscape	
variation	 increased	 substantially.	 Landscapes	with	 less	 than	6%	of	
forest	cover	showed	high	levels	of	variation	in	forest	restoration	suc-
cess	above	50%.

After	weighting	the	landscape	variation	in	forest	restoration	suc-
cess	by	the	amount	of	restorable	areas	within	the	same	landscape	
(1	×	1	km	pixel),	Tropical	 and	Subtropical	Moist	Broadleaf	Forests	
had	 lower	predicted	average	 landscape	variation	 (12.6%),	whereas	
Tropical	 and	 Subtropical	 Dry	 Broadleaf	 Forests	 had	 higher	 land-
scape	 variation	 (22.9%)	 compared	 to	 the	 other	 biomes	 (see	 Table	
S1).	 At	 the	 country	 level,	 French	 Guiana	 had	 the	 lowest,	 (0.6%)	
whereas	 Somalia,	 the	 highest	 (56.9%)	 average	 of	 weighted	 land-
scape	variation	in	forest	restoration	success	(Table	S2).	Among	the	
five	countries	with	the	largest	areas	potentially	restorable	(i.e.	pre-
viously	forested	areas	currently	occupied	by	other	land	uses;	China,	
Russia,	Brazil,	 the	United	States	 and	 India;	 in	descending	order	of	

availability),	the	United	States	has	the	lowest	(14.8%)	and	India	has	
the	highest	(40.3%)	average	of	weighted	landscape	variation	in	for-
est	restoration	success	(Table	S2).

3.3 | Bonn challenge commitments as a case study

The	total	restoration	cost	(implementation	and	opportunity	costs	com-
bined)	of	 forest	 restoration	varied	among	 the	 three	Bonn	Challenge	
commitments	used	as	case	studies.	In	each	region,	we	identified	(a)	the	
landscapes	with	lowest	variation	in	forest	restoration	success	and	(b)	
the	landscapes	with	lowest	opportunity	costs,	to	reach	each	commit-
ted	target	(Figure	5).	These	simulations	aggregated	both	national-scale	
implementation	costs	and	per	ha	opportunity	costs	assuming	that	less	
expensive	restoration	methods,	such	as	natural	regeneration,	are	pri-
oritized	 for	 forest	 restoration	 implementation.	 Implementation	costs	
based	on	full	tree	planting	varied	from	US$	216	Mi	(±273	–	160	Mi)	
to	11	billion	(±16	−	5	Bi).

When	 prioritizing	 landscapes	 with	 lowest	 landscape	 varia-
tion,	 our	 approach	 led	 to	 a	 reduction	 in	 implementation	 costs	 for	
each	 commitment	 from	 US$	 973	Mi	 (±1.3	 Bi	 –	 610	Mi)	 to	 9.9	 Bi	
(±15	−	4.6	Bi)	below	costs	incurred	either	using	full	tree	planting	as	
the	sole	restoration	method	 (Figure	5).	Our	approach	also	 led	to	a	
reduction	in	implementation	costs	for	each	commitment	from	US$	
71	Mi	(±97	–	44	Mi)	to	1.3	Bi	(±2.0	Bi	–	600	Mi)	when	compared	to	
prioritizing	forest	restoration	in	landscapes	with	lowest	opportunity	
cost	but	based	on	full	tree	planting	(Figure	5).	That	is,	our	solutions	
were	26%	to	82%	less	expensive	than	solutions	based	on	the	lowest	
opportunity	costs.	On	the	other	hand,	our	approach	was	from	12	Mi	

F I G U R E  4  Map	of	landscape	variation	in	forest	restoration	success	(FRS)	for	the	five	forest	biomes.	Non-restorable	areas	are	considered	
1	km	pixels	with	100%	of	tree	canopy	cover,	urban	areas,	water	bodies,	wetlands	and	areas	that	were	not	previously	forested	(e.g.	
grasslands).
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to	282	Mi	more	expensive	in	terms	of	opportunity	cost	than	when	
identifying	landscapes	with	lowest	opportunity	costs.

4  | DISCUSSION

As	 expected,	 landscape	 variation	 in	 forest	 restoration	 success	 in	
temperate	 and	 tropical	 forest	 biomes	 decreased	 exponentially	 as	
the	amount	of	forest	cover	increased	within	a	landscape.	We	found	
the	strongest	scale	of	effects	was	within	a	buffer	size	of	5	km	radius	
—	 followed	 by	 an	 equally	 plausible	model	measuring	 forest	 cover	
at	 a	 buffer	 size	of	 10	 km	 radius.	 That	 is,	 both	 restoration	 success	
(see	Crouzeilles	&	Curran,	2016)	and	its	variation	in	relation	to	the	
quantitative	values	of	biodiversity	 found	 in	 reference	 systems	are	
best	predicted	by	forest	cover	within	a	buffer	size	(landscape)	of	5	
to	10	km	in	radius.

We	mapped,	for	the	first	time,	landscape	variation	in	forest	res-
toration	success	across	major	forest	biomes,	which	is	higher	across	
countries	 than	 across	 the	 biomes.	 Landscapes	 where	 the	 forest	
cover	has	declined	below	30%	show	increased	landscape	variation	
in	forest	restoration	success.	Nonetheless,	the	good	news	is	that	the	
forest	biomes	with	larger	potentially	restorable	areas	are	those	with	
lower	 landscape	variation	in	forest	restoration	success	(Temperate	
Broadleaf	 and	 Mixed	 Forests,	 Temperate	 Conifer	 Forests,	 and	
Tropical	and	Subtropical	Moist	Broadleaf	Forests).	Despite	the	large	
amount	of	deforested	 land	worldwide	 (Hansen	et	al.,	2013;	Lewis,	
Edwards,	&	Galbraith,	2015),	38%	of	the	172	countries	(238	M	ha)	
that	 had	 previously	 forested	 areas	 still	 have	 low	 levels	 (≤10%)	 of	
landscape	variation	in	forest	restoration	success,	on	average	(Table	
S2).	Countries	with	marginally	higher	weighted	landscape	variation	
but	more	restorable	areas	also	may	be	considered	as	no-regret	tar-
gets	 for	private	 restoration	 investments,	 such	as	Brazil	and	Russia	
(with	324	M	ha	restorable	areas).	Therefore,	our	new	approach	can	
help	 to	 identify	 landscapes	with	 reduced	 risks	of	ecological	 forest	
restoration	success,	a	critical	first	step	to	implementing	large-scale,	
long-lasting	and	cost-effective	forest	restoration	interventions.

Our	robust	methodological	approach	(including	a	new	metric	to	
measure	 variation	 in	 restoration	 outcomes)	 provides	 a	 novel	 tem-
plate	 for	 developing	 predictive	 models	 and	 maps	 to	 better	 guide	
forest	restoration	investments	and	policies	(see	Molin	et	al.,	2018).	
Other	ecological	and	socio-economic	variables	that	affect	forest	res-
toration	at	the	landscape	scale	(e.g.	Crouzeilles	et	al.,	2017)	also	may	
result	in	similar	patterns	of	variation	in	restoration	outcomes,	such	
as	past	disturbance,	rural	migration	and	precipitation.	However,	such	
potential	variations	have	not	yet	been	examined	and	are	beyond	the	
scope	of	this	study.	Future	studies	should	explore	whether	these	re-
lationships	can	be	meaningfully	predicted	and	mapped.	In	our	case,	
landscape	variation	 in	 forest	 restoration	 success	was	not	affected	

by	higher	levels	of	replication	(i.e.	number	of	response	ratios	within	
a	study	landscape),	but	it	needs	to	be	investigated	in	future	studies	
using	our	approach.	Although	the	approach	developed	here	was	ap-
plied	on	a	global	scale,	it	also	can	be	easily	replicable	at	smaller	scales	
to	solve	local	questions	using	on-the-ground	comparisons	of	biodi-
versity	recovery	between	restoring	and	reference	forests.

It	 is	 important	 to	 note	 that	 the	 studies	 in	 our	 meta-analysis	
measured	 variation	 in	 forest	 restoration	 success	under	 favourable	
landscape	 conditions,	 as	 publications	 on	 forest	 restoration	 may	
have	a	bias	towards	positive	results	(Reid,	Fagan,	&	Zahawi,	2018).	
Moreover,	not	all	restoration	initiatives	measure	restoration	success	
based	on	biodiversity	responses	and	often	focus	on	other	outcomes	
such	as	ecosystem	services	provisioning,	local	livelihoods	and	finan-
cial	 returns.	Nevertheless,	 our	map	 is	 useful	 for	 guiding	 decision-
making	under	several	different	circumstances,	such	as	(a)	prioritizing	
landscapes	for	restoration	with	a	focus	on	recovery	of	biodiversity,	
(b)	improving	regulations	on	biodiversity	offsetting	and	(c)	estimat-
ing	 implementation	 costs	 of	 forest	 ecological	 restoration	 at	 the	
global	scale.	Complementarly,	although	other	diverse	outcomes	may	
be	specifically	targeted	by	restoration	programmes,	biodiversity	re-
covery	is	a	pre-requisite	for	all	restoration	processes,	as	it	is	a	surro-
gate	of	a	myriad	of	contributions	of	restoration	to	people	and	nature.

4.1 | Helping to unlock investments in forest 
landscape restoration

Our	approach	may	help	unlock	the	flow	of	funds	to	implement	the	
ambitious	restoration	commitments	planned	worldwide.	For	exam-
ple,	the	financial	feasibility	of	restoration	is	a	critical	criterion	when	
identifying	priority	areas	for	cost-effective	restoration	(Brancalion,	
Niamir,	et	al.,	2019;	Strassburg	et	al.,	2019).	The	financial	feasibility	
of	restoration	is	dependent	on	landscape	variation	in	forest	restora-
tion	success	because	risky	restoration	initiatives	(with	unpredicted	
outcomes)	are	unlikely	to	attract	investors	(Brancalion,	Niamir,	et	al.,	
2019;	Brancalion	et	al.,	2017),	may	rely	more	heavily	on	public	funds	
(Ding	et	al.,	2017)	and	can	have	higher	costs.	Costly,	labour-intensive	
interventions	may	be	needed	for	kickstarting	restoration	processes	
and	 adaptive	 management	 interventions,	 potentially	 essential	 for	
safeguarding	 a	 favourable	 restoration	 trajectory.	 Identifying	 land-
scapes	with	low	risks	of	restoration	success	can	encourage	greater	
restoration	 investments	 from	 the	 private	 sector	 in	 countries	with	
lower	 average	of	weighted	 landscape	 variation,	 such	 as	 Suriname,	
French	Guiana,	Solomon	 Islands,	Dominica	and	Palau	 (the	 top	 five	
countries;	always	with	values	<3%,	Table	S2).	Alternatively,	the	pub-
lic	sector	and	governments	may	decide	to	spatially	complement	pri-
vate	 investments	 in	restoration	that	target	 less	risky	 interventions	
and	concentrate	the	bulk	of	their	investments	on	restoration	in	more	
risky	landscapes	such	as	those	in	highly	deforested	areas.	In	these	

F I G U R E  5  Three	Bonn	Challenge	commitments	used	as	case	study	to	identify	landscapes	with	lowest	either	landscape	variation	in	
forest	restoration	success	(FLS)	(a1,	b1,	c1)	or	opportunity	costs	(a2,	b2,	c2),	to	reach	each	committed	target.	These	are	(a)	Atlantic	Forest	
Restoration	Pact	with	1	M	ha	in	Tropical	and	Subtropical	Moist	Broadleaf	Forests,	(b)	USA	with	15	M	ha	in	Temperate	Broadleaf	and	Mixed	
Forests	and	Temperate	Coniferous	Forests	and	(c)	Uganda	with	1	M	ha	in	Tropical	and	Subtropical	Dry	Broadleaf	Forests.
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cases,	restoration	outcomes	may	focus	less	on	biodiversity	recovery,	
and	more	 on	 improving	 local	 food	 security,	 the	 supply	 of	 ecosys-
tem	services	(e.g.	carbon	storage,	water	quality,	fuel	wood	or	timber)	
and/or	supporting	local	livelihoods	(e.g.	Strassburg	et	al.,	2019).

4.2 | Supporting biodiversity offsetting with forest 
landscape restoration

The	lack	of	a	robust	mechanistic	understanding	of	landscape	varia-
tion	underpinning	forest	restoration	success	has	precluded	the	use	
of	restoration	initiatives	as	a	reliable	operational	approach	to	com-
pensate	 for	 environmental	 degradation	 (e.g.	 biodiversity	 offsets;	
Budiharta	et	al.,	2018;	Maron	et	al.,	2012;	Moilanen,	Teeffelen,	Ben-
Haim,	&	Ferrier,	2009).	Thus,	our	map	can	be	used	to	support	and	
develop	new	regulations	and	policies	 for	biodiversity	offsetting,	 in	
which	 the	 total	area	 to	be	 restored	can	be	weighted	by	values	 for	
landscape	 variation	 in	 forest	 restoration	 success.	 This	 weighting	
would	require	larger	areas	to	be	restored	where	landscape	variation	
is	 higher,	 or	 prohibit	 compensatory	 restoration	 in	 areas	with	 land-
scape	variation	above	a	given	threshold.	For	example,	several	land-
scapes	 across	 countries	 (top	 five:	 Somalia,	 Seychelles,	 Iraq,	 Benin	
and	Madagascar;	in	descending	order)	with	high	weighted	landscape	
variation	(>41%,	Table	S2)	may	be	too	risky	to	permit	compensatory	
restoration.	In	these	cases,	halting	and	reversing	deforestation	above	
a	given	 threshold	 in	 terms	of	amount	of	 forest	cover	will	 facilitate	
recovery	and	reduce	the	risk	of	irreversible	biodiversity	decline	(e.g.	
Pardini,	Arruda	Bueno,	Gardner,	Prado,	&	Metzger,	2010).	It	is	criti-
cal	 to	 highlight,	 however,	 that	 our	map	 does	 not	 account	 for	 spe-
cies	uniqueness	and	complementarity.	Thus,	biodiversity	offsetting	
mechanisms	 must	 be	 supported	 by	 additional	 critical	 biodiversity	
data.

4.3 | Bonn challenge commitments as study cases

The	restoration	target	in	the	Bonn	Challenge	is	350	M	ha	of	restored	
forests	by	2030,	with	170	M	ha	within	59	commitments	pledged	to	
date	(Bonn	Challenge,	2018).	Most	of	these	commitments	are	based	
on	a	‘forest	landscape	restoration’	approach,	which	aims	to	enhance	
the	 ecological	 functionality	 of	 deforested	 landscapes	 (Chazdon	 et	
al.,	 2017).	 Although	 achieving	 reference	 ecosystem	 levels	 of	 bio-
diversity	 is	 not	 the	main	 focus	 of	 these	 programmes,	 biodiversity	
recovery	 will	 certainly	 play	 a	 central	 role	 in	 recovering	 diverse	
ecological	functions	 (Kaiser-Bunbury	et	al.,	2017;	Strassburg	et	al.,	
2019).	Landscapes	with	 lower	 levels	of	variation	 in	 forest	 restora-
tion	success	are	more	likely	to	be	successfully	restored	as	they	are	
characterized	by	more	forest	cover	in	surrounding	areas,	which	is	a	
strong	predictor	of	 success	 (e.g.	Crouzeilles	&	Curran,	2016;	Leite	
et	al.,	2013).	We	have	shown	that	the	implementation	costs	of	for-
est	restoration	could	potentially	be	reduced	by	more	than	80%–97%	
if	 our	 approach	 is	 adopted	 (i.e.	 identifying	 landscapes	 with	 low-
est	 landscape	variation)	 instead	of	the	widely	preferred	use	of	full	
tree	planting	as	a	 restoration	method	 (Chazdon,	2014;	Chazdon	&	
Guariguata,	 2016).	 Although	 our	 approach	 increases	 opportunity	

costs	by	US$	12	Mi,	28	Mi	and	282	Mi	compared	to	prioritizing	res-
toration	in	landscapes	with	lowest	opportunity	cost,	these	costs	are	
compensated	for	by	a	reduction	in	implementation	costs,	which	are	
US$	121	Mi,	71	Mi	and	1.3	Bi	for	Brazilian	Atlantic	Forest,	Uganda	
and	US	commitments,	 respectively.	These	results	highlight	the	 im-
portance	of	our	map	as	a	tool	to	help	decision-makers	overcome	a	
critical	barrier	—	identifying	landscapes	where	low-cost	restoration	
methods	 based	 on	 natural	 regeneration	 processes	 can	 be	 imple-
mented	for	large-scale	restoration	(Chazdon	&	Guariguata,	2016).

5  | CONCLUSIONS

We	 found	 that	 variation	 in	 forest	 restoration	 success	 at	 the	 land-
scape	scale	was	strongly	associated	with	 the	 forest	cover	 remain-
ing	within	the	landscape.	Ensuring	the	persistence	of	native	forests	
(Reid	 et	 al.,	 2017)	 and	 integrating	 restoration	 with	 conservation	
practices	and	policies	are	key	elements	 for	 forest	 restoration	suc-
cess.	Four	key	recommendations	arise	from	this	study.	First,	it	is	es-
sential	to	halt	deforestation,	particularly	in	areas	where	forest	cover	
in	the	landscape	declines	below	30%.	Second,	commencing	restora-
tion	on	landscapes	with	low	(<10%)	levels	of	variation	in	forest	resto-
ration	success	may	attract	the	levels	of	financial	investment	needed	
to	 fund	 large-scale	 restoration	 focused	 on	 biodiversity	 recovery.	
Third,	restoration	in	areas	with	high	landscape	variation	(>50%)	will	
be	costly	and	may	not	be	effective	for	restoring	native	biodiversity.	
Nevertheless,	landscape	restoration	initiatives	in	these	areas	can	be	
vitally	important	for	increasing	the	supply	of	a	wide	range	of	ecosys-
tem	services	and	 improving	socio-economic	conditions.	Therefore,	
restoration	in	these	areas	should	be	a	planned	process	also	consid-
ering	 other	 landscape	 factors	 to	 increase	 forest	 cover	 as	 a	whole	
and	consequently	decrease	 the	variation	 in	 forest	 restoration	suc-
cess.	Fourth,	given	limited	financial	resources	to	invest	in	forest	and	
landscape	restoration,	our	results	can	help	guide	restoration	efforts	
towards	landscapes	where	restoration	interventions	will	yield	higher	
cost-effectiveness	for	biodiversity	conservation.
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