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Abstract Habitat availability—or how much habitat

species can reach at the landscape scale—depends

primarily on the percentage of native cover. However,

attributes of landscape configuration such as the

number, size and isolation of habitat patches may

have complementary effects on habitat availability,

with implications for the management of landscapes.

Here, we determined whether, and at which percent-

ages of native cover, the number, size and isolation of

patches contribute for habitat availability. We quan-

tified habitat availability in 325 landscapes spread

across the state of Rio de Janeiro, in the Atlantic Forest

hotspot, with either high ([50 %), intermediate

(50–30 %), low (30–10 %) or very low (\10 %)

percentage of native cover, and for six hypothetical

species differing in inter-patch dispersal ability.

Above 50 % of native cover, the percentage of cover

per se was the only determinant of habitat availability,

but below 50 % the attributes of landscape configu-

ration also contributed for habitat availability. The

number of patches had a negative effect on habitat

availability in landscapes with 50–10 % of native

cover, whereas patch size had a positive effect in

landscapes with\10 % of native cover. The different

species generally responded to the same set of land-

scape attributes, although to different extents, poten-

tially facilitating decision making for conservation. In

landscapes with[50 % of native cover, conservation

actions are probably sufficient to guarantee habitat

availability, whereas in the remaining landscapes

additional restoration efforts are needed, especially to

reconnect and/or enlarge remaining habitat patches.

Keywords Brazilian Atlantic Forest �
Connectivity conservation � GIS � Habitat

fragmentation � Landscape metrics � Restoration

Introduction

The process of habitat loss and fragmentation causes

profound alterations in the amount and configuration

of habitat in landscapes (Ewers and Didham 2006;

Fisher and Lindenmayer 2007). The reduction in the

total amount of native vegetation cover is generally

considered the most deleterious consequence of this

process on biodiversity (Andrén 1994; Fahrig 2003;
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Ewers and Didham 2006; Fischer and Lindenmayer

2007; Pardini et al. 2010). Such reduction leads to

further changes in landscape configuration, including

a decrease in mean patch size, an increase in patch

isolation, and changes in the number of patches, which

tends to be higher at intermediate percentages of

native vegetation cover (Andrén 1994; Fahrig 2003).

The changes in such attributes of landscape configu-

ration are usually non-linearly related to reductions in

the amount of native vegetation cover (Fahrig 2003;

Ewers and Didham 2006), potentially leading to

sudden alterations on dispersal success (With and

King 1999), immigration rates (Püttker et al. 2011)

and landscape connectivity (Metzger and Décamps

1997), ultimately affecting species abundance and

richness (Pardini et al. 2010). A central challenge is to

determine whether, and at which percentages of native

cover, the number, size and isolation of patches

influence biodiversity, information needed to propose

effective conservation and restoration actions for

landscapes (Fahrig 2003; Lindenmayer et al. 2008;

Martensen et al. 2012; Villard and Metzger in press).

Two theoretical models considering processes at

both landscape and local scales were proposed to

explain the effects of reducing native vegetation cover

on population persistence. The Fragmentation Thresh-

old model (Andrén 1994) suggests the existence of a

threshold in the amount of native vegetation cover at

the landscape scale. Below a certain amount of native

vegetation cover, for example 30–10 % depending on

the species’ dispersal ability, population persistence

becomes dependent on the size and isolation of

patches. The threshold results from a reduction in

patch size and an exponential increase in patch

isolation, which hampers movement of species

between patches (Andrén 1994). On the other hand,

the Regime Shift model (Pardini et al. 2010) predicts

that the effects of the size and isolation of patches are

evident only at ‘‘intermediate’’ amounts of native

vegetation cover (e.g. *30 %), when immigration

rates tend to be insufficient to maintain populations in

small patches. At higher percentages of native vege-

tation cover (e.g. *50 %), immigration rates are high

enough to maintain populations even in small patches,

while at lower percentages of cover (e.g. *10 %)

immigration rates are eroded due to the exponential

increase in patch isolation, and even populations in

large patches become subject to local extinction. As a

consequence, the process of habitat loss and

fragmentation could lead to a regime shift, character-

ized by the irreversible loss of habitat specialist

species, and a reduction in richness at both landscape

and local scales (Pardini et al. 2010).

To avoid the loss of habitat specialist species at the

landscape scale, it is essential to maximize the amount

of habitat available for these species, because the

number of individuals of any species supported in a

landscape is closely linked to the amount of habitat

(Hubbell 2001; Fahrig 2003). In this sense, the concept

of habitat availability, or how much habitat species

can reach in the landscape, becomes particularly

useful (Pascual-Hortal and Saura 2006). Habitat

availability depends on a patch attribute (e.g. patch

size) and also on functional connectivity, because

large but isolated patches will not be reached by—and

thus will be unavailable for—individuals inhabiting

other patches (Pascual-Hortal and Saura 2006; Luque

et al. 2012). Habitat availability may vary according to

species’ dispersal abilities (Saura and Rubio 2010) and

may affect the occurrence of species across different

patches in a landscape (Awade et al. 2012; Decout

et al. 2012). By comparing habitat availability among

different landscapes, it would be possible to determine

the relative contribution of different attributes of

landscape configuration for habitat availability. Quan-

tifying habitat availability and understanding how it is

affected by different attributes of landscape configu-

ration may offer valuable insights for decision making

in conservation and restoration planning (Saura and

Pascual-Hortal 2007; Awade et al. 2012; Luque et al.

2012; Crouzeilles et al. 2013).

In this paper we determined the relative contribu-

tion of the number, size and isolation of patches for

habitat availability in landscapes encompassing a

gradient of native vegetation cover. Our main hypoth-

esis was that the relative contribution of the number,

size and isolation of patches for habitat availability

depends on the percentage of native cover at the

landscape scale. In testing this hypothesis, we com-

pared predictions of the Fragmentation Threshold and

Regime Shift models. The former predicts stronger

effects of patch size and isolation at landscapes with

B30 % of native cover, while the later predicts

stronger effects of patch size and isolation only at

landscapes with ‘‘intermediate’’ cover (*30 %). We

also contrasted responses of six hypothetical species

differing in inter-patch dispersal abilities (10, 50, 200,

500, 1000 or 3000 m). Analyses encompassed 325
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landscapes of the Atlantic Forest hotspot, spread

across the entire state of Rio de Janeiro in Brazil, and

categorized in four scenarios of native cover: high

([50 %), intermediate (50–30 %), low (30–10 %) or

very low (\10 %). The Atlantic Forest is an invaluable

laboratory to understand the effects of habitat frag-

mentation in tropical regions, due to the high heter-

ogeneity of land use (Laurance 2009) and the varying

levels of habitat loss and fragmentation (Ribeiro et al.

2009).

Methods

Study area

Rio de Janeiro is located at the southeastern coast of

the Brazilian Atlantic Forest, with an area of ca.

43,700 km2. Currently, the state is inhabited by

approximately 16 million people (http://ibge.gov.br/

estadosat/perfil.php accessed on April 2012) and less

than 20 % of its native forest cover still remains (SOS

Mata Atlântica and INPE 2010). The process of habitat

loss and fragmentation in this region was driven

mainly by socio-economic pressures, resulting in dif-

ferent types of land use such as agriculture, pastures

and urban areas, which surround more than 10,000

forest fragments. Approximately 85 % of these frag-

ments have less than 100 ha, totaling 20 % of the

remaining forest cover in Rio de Janeiro, while only 70

fragments have more than 1000 ha and represent 67 %

of the remaining cover (Fidalgo et al. 2009). Remnant

forest data were obtained from the map produced by

SOS Mata Atlântica and INPE (2010), derived from

TM/Landsat 5, ETM?/Landsat 7 or CCD/CBERS-2

images (Ponzoni et al. 2012), available at a scale of

1:50,000 in vector format, and delimiting remnants

C3 ha (Fig. 1). All geographic information system

data were converted to UTM projection to assure

accurate area and distance calculations.

We divided Rio de Janeiro in hexagons of 10,000 ha,

each hexagon representing a different landscape used as

the unit of analysis. The size of the hexagons was

determined following three criteria: (i) hexagons were

large enough to allow the inclusion of species with large

dispersal abilities (3000 m) in the analysis, (ii) the total

number of landscapes within each scenario of native

vegetation cover was large enough for robust analyses,

and (iii) other studies in the Atlantic Forest have used

10,000 ha landscapes to study the effects of habitat loss

and fragmentation (e.g. Pardini et al. 2010; Püttker et al.

2011), facilitating comparisons. We considered only

landscapes entirely contained within the boundaries of

Rio de Janeiro, totalizing 325 landscapes (Fig. 1).

Quantifying habitat availability

We quantified habitat availability at the landscape

scale using the Probability of Connectivity index (PC;

Saura and Pascual-Hortal 2007). This index considers

that the amount of habitat actually available to

individuals depends on a patch attribute and also on

functional connectivity, and can be partitioned into

three fractions (Saura and Rubio 2010). The patch

attribute may be determined by its size, habitat quality

or other characteristics (named ‘‘intra’’ fraction),

while connectivity is determined by flux weighted by

area (‘‘flux’’ fraction) and the topological position of a

patch in the network (‘‘connector’’ fraction), accord-

ing to the probability of dispersal of the species (Saura

and Rubio 2010). PC calculates the probability of

dispersal between two patches as a decreasing func-

tion of inter-patch Euclidean or effective distance

(Saura and Pascual-Hortal 2007), as:

PC ¼
Pn

i¼1

Pn
j¼1ai � aj � P�ij
A2

L

ð1Þ

where n is the number of patches, ai and aj are the

attributes of the respective patches (e.g. patch size), Pij
*

is the maximum product probability of all possible

paths between patches i and j, and AL
2 is the square of

the geographic area of the landscape (Saura and

Pascual-Hortal 2007). The probability of connection

between two patches depends on the dispersal ability

of the species and the presence of intermediate

stepping-stone patches facilitating movement. The

probability of a path—defined as a possible trajectory

from one patch to another—is the product of dispersal

probabilities for all connections in the way. Thus, the

maximum product probability is the path with highest

connection probability among all possibilities

between two specified patches. PC values vary from

0 (no habitat available) to 1 (all the landscape is

occupied by habitat). We used patch size as the patch

attribute, Euclidean distance between patches as the

connection attribute, and dispersal values correspond-

ing to a probability of 50 % of direct dispersal between
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patches, to generate the negative exponential function

of inter-patch Euclidean distance. We used Euclidian

rather than effective distances because our focus was

on the effects of the number, size and isolation of

patches, which could be obscured by including matrix

effects (Bender and Fahrig 2005).

To evaluate how habitat availability at a given

landscape varies according to the dispersal abilities of

the focal species, we contrasted species with short (10

or 50 m), medium (200 or 500 m) or large (1000 or

3000 m) abilities to perform inter-patch movements,

based on empirical data for Atlantic Forest species

compiled by Crouzeilles et al. (2010). These dispersal

values correspond to 50 % of probability of direct

dispersal between two patches, representing median

dispersal distances. Because our aim was to evaluate

the effect of dispersal ability only, we kept other

functional traits similar among species, such as habitat

specificity and minimum patch size required. There-

fore, all species compared were forest specialists that

might occur in remnants C3 ha. Analyses of habitat

availability were performed using the software Cone-

for Sensinode 2.5.8 command line version (www.

conefor.org; Saura and Torné 2009).

Explanatory variables

The total amount of native vegetation cover (NC)

was quantified as the percentage of remnant forest

within each landscape. This metric represents the

effect of habitat loss independently of its subdivi-

sion. We also quantified three widely used metrics

of landscape configuration (Fahrig 2003): number of

patches (NP), mean patch size (PS), and mean patch

isolation (PI). Patch isolation was determined as the

mean distance among all patches. Habitat availabil-

ity tends to be higher in landscapes with few, larger

and/or less isolated patches for the same amount of

native cover (Saura and Pascual-Hortal 2007). All

variables were measured using the software ArcGis

9.3 (ESRI 2008).

Fig. 1 Distribution of Atlantic Forest remnants (in gray) across

the state of Rio de Janeiro, southeastern Brazil. The 325

hexagons represent only landscapes entirely located within the

boundaries of Rio de Janeiro. These different landscapes were

used as units of analysis
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To test our main hypothesis, and also to compare the

predictions of the Fragmentation Threshold and

Regime Shift models, we categorized the 325 land-

scapes into four scenarios of native cover for analysis:

high ([50 %; n = 26 landscapes), intermediate

(50–30 %; n = 38), low (30–10 %; n = 107) and

very low native cover (\10 %; n = 154). We excluded

five landscapes because they had substantially fewer

patches or higher patch sizes than other landscapes in

the same scenario. To assist in the interpretation of

results, we correlated all explanatory variables (NC, PI,

NP, and PS) separately for each scenario of native

cover. Except for landscapes with very low cover

(\10 %), PS and NP, as well as PI and PS, were

negatively related (Spearman’s r B -0.78 and

B-0.52, respectively), whereas PI and NP were

positively related (r C 0.56). The NC had a positive

relationship with PS in all scenarios (Spearman’s

r B 0.46), a positive relationship with NP in land-

scapes with very low cover (r = 0.76), and a negative

relationship in landscapes with intermediate cover

(r = -0.52).

Data analysis

We used an information theoretic approach (Burnham

and Anderson 2002) to compare the relative contribu-

tion of NC, PI, NP and PS for habitat availability. We

performed 24 separate analyses, one analysis for each

combination of species’ dispersal ability (10, 50, 200,

500, 1000 or 3000 m) and scenario of native cover

([50, 50–30, 30–10 or \10 %). Because habitat

availability was strongly related to NC (see Fig. 2),

we included NC in all models as a covariate. Thus, in

each analysis, we contrasted four competing general-

ized linear models, one reference model containing

only native vegetation cover (NC), and three other

models containing NC plus either PI, NP or PS. This

approach allowed evaluating whether, and at which

percentages of native cover, such attributes of land-

scape configuration affect habitat availability in

addition to NC. Habitat availability was modeled

assuming a beta distribution, because the values were

continuous but bounded between 0 and 1 (Bolker

2008). We used a probit link function for all models.

We calculated for each candidate model the Akaike

Information Criterion corrected for small samples

(AICc), the Di (=AICci - minimum AICc) and the

Akaike weight (wi), which indicates the probability

that the model i is the best model within the set

(Burnham and Anderson 2002). Models with

0 \Di B 2 were considered equally plausible to the

top-ranked model (Di = 0), unless they differed from

that model by containing only one extra (additional)

parameter, which was then considered uninformative

(Burnham and Anderson 2002; Arnold 2010). All

analyses were carried out in the R 2.12 environment (R

Development Core Team 2010), using the package

‘‘betareg’’ (Zeileis et al. 2012).

Results

Habitat availability had a clearly non-linear, expo-

nential relationship with the total amount of native

cover for the six species analyzed (Fig. 2). The

relationship was particularly clear for the more mobile

species (3000 m), whereas the scatter of points

increased as species’ dispersal abilities decreased,

reflecting deviations from the maximum possible

values of habitat availability at a given amount of

native cover (Fig. 2). In general, both the median and

the variability in habitat availability values increased

with increasing dispersal abilities (Fig. 3). Variability

within and among species was higher in landscapes

with low (30–10 %) native cover, and lower in

landscapes with intermediate (50–30 %) or high

([50 %) native cover (Fig. 3).

The relative contributions of patch isolation (PI),

number of patches (NP) and patch size (PS) for habitat

availability varied among the four scenarios of native

cover, with patterns often (but not always) consistent

among different species (Table 1). In landscapes with

high native cover ([50 %), the reference model,

containing NC only, was always ranked as the most

plausible one (Table 1). For some species, PI, NP and/

or PS were also present in addition to NC in models

with Di B 2, but in all cases their inclusion did not

improve substantially model fit compared to the model

with NC only, hence these parameters did not affect

substantially habitat availability (Table 1).

In landscapes with intermediate native cover

(50–30 %), the NP, in addition to NC, was the main

factor affecting habitat availability for all species (wi

for NP varying from 0.67 to 0.94, Table 1). In

addition, for the more mobile species (3000 m), the

model NC ? PI was also plausible, because it had a

Di \ 2 and differed from the top-ranked model

Landscape Ecol (2014) 29:479–489 483
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(NC ? NP) by containing an alternative (and not

merely an additional) parameter. Thus, PI also

contributed to habitat availability, although to a lower

extent (wi = 0.25) than NP. Both NP and PI were

negatively related to habitat availability.

In landscapes with low native cover (30–10 %),

habitat availability depended on the NP, in addition to

NC, for all species (wi for NP = 1.00 for species with

dispersal ability B1000 m, and wi = 0.34 for species

with dispersal ability = 3000 m). For species with

dispersal abilities B1000 m, the model with NC ? NP

was the only one considered plausible. For the more

mobile species (3000 m), the model NC ? NP was

again plausible but ranked only as the second best one,

with NC ? PS being the most plausible model, indi-

cating that PS was the main factor affecting habitat

availability (wi = 0.66; Table 1). Habitat availability

was negatively related to NP and positively related to

PS.

Finally, in landscapes with very low native cover

(\10 %), habitat availability depended strongly on PS,

in addition to NC, for all species (wi for NP = 1.00 for

all species). The model NC ? PS was always the only

plausible one, and habitat availability was always

positively related to PS.

Discussion

For all species, habitat availability depended primarily

on the amount of native cover at the landscape scale, in

accordance with the view that habitat loss is the main
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Fig. 2 Relationship between percentage of native cover and

habitat availability across 325 Atlantic Forest landscapes, for six

species with different inter-patch dispersal abilities (10, 50, 200,

500, 1000 and 3000 m). Habitat availability values were

calculated for each species at each landscape using the

Probability of Connectivity index (PC). Black lines are the

maximum value of the PC index for each percentage of native

cover, which occurs when all habitat is concentrated in a single

patch
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cause of biodiversity decline in fragmented landscapes

(Fahrig 2003). The relationship between native cover

and habitat availability, as quantified through the

Probability of Connectivity index (PC), was clearly

non-linear but exponential. This pattern reflects the

fact that the numerator in the index multiplies the

patch attributes (areas; Saura and Pascual-Hortal

2007), thus habitat availability tends to increase

exponentially as native cover increases. The maxi-

mum value of the PC index for each percentage of

native cover occurs when all habitat is concentrated in

a single patch (black lines in Fig. 2). Departures from

the maximum values are possible, reflecting the

influence of attributes of landscape configuration,

and species dispersal abilities. Such departures were

especially evident for the less mobile species (Fig. 2),

whose limited dispersal ability reduces the probability

of connection between patches, suggesting that these

species are more strongly affected by landscape

configuration compared to more mobile species. These

results are in accordance with many empirical studies

showing that species with short gap-crossing ability

are more sensitive to habitat loss and fragmentation

(review in Henle et al. 2004; Awade et al. 2012;

Martensen et al. 2012). The higher variability in

habitat availability among and within species occurred

in landscapes with 30–10 % of cover, probably

because variation in the attributes of landscape

configuration was maximal at these percentages, what

may be the pattern for most landscapes (Villard and

Metzger in press).

We confirmed the hypothesis that the effects of the

number, size and isolation of patches varies with the

total amount of habitat at the landscape scale. In

landscapes with high native cover ([50 %), habitat

availability was affected only by the amount of

vegetation cover per se, independently of species’

dispersal abilities, in accordance with the predictions

of the Fragmentation Threshold (Andrén 1994) and the

Regime Shift models (Pardini et al. 2010). In such

landscapes, patches are generally large and close to

each other (Andrén 1994), thus a great part of the

landscape remains functionally connected because

species only need to cross short distances in the
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Fig. 3 Variation of habitat availability with inter-patch dis-

persal ability of species (10, 50, 200, 500, 1000 and 3000 m)

across 325 Atlantic Forest landscapes. Analyses were carried

out separately for landscapes with very high ([50 %), high

(50–30 %) intermediate (30–10 %) or low (\10 %) percentage

of native cover. Symbols include the median (horizontal line),

±1 SE (box), the 95 % confidence interval (vertical lines) and

outliers (points). Habitat availability values were calculated for

each species at each landscape using the Probability of

Connectivity index (PC). The graphs depict standardized

values, calculated within each landscape by dividing the PC

value of each species by the smaller value obtained in that

landscape. Standardized values thus indicate how larger was the

PC value of a species in a given landscape compared to the

smallest PC value obtained in the same landscape
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matrix. Consequently, such landscapes may have high

habitat availability even for species with limited

dispersal abilities, potentially sustaining large popu-

lation sizes (Fahrig 2003) and species richness (Par-

dini et al. 2010; Martensen et al. 2012).

At the other extreme, when native cover was very

low (\10 %), habitat availability for all species was

also dependent on patch sizes. In such landscapes,

patch isolation is so high that the variation in isolation

values does not have detectable effects on habitat

availability, even for the more mobile species. Thus,

the amount and proximity of remaining habitat is so

low that habitat availability is substantially incre-

mented only through increases in patch sizes. In other

words, the intra fraction dominates the values of

habitat availability in this scenario (see Saura and

Table 1 Performance of 24 models predicting habitat availability across a gradient of native cover in the state of the Rio de Janeiro,

Brazil

[50 % 50–30 % 30–10 % \10 %

Model Di wi Model Di wi Model Di wi Model Di wi

(a) Dispersal ability = 10 m

NC 0.00 0.45 NC ? NP 0.00 0.81 NC ? NP 0.00 1.00 NC ? PS 0.00 1.00

NC ? PI 0.64 0.33 NC ? PI 3.18 0.16 NC ? PS 71.42 \0.01 NC ? NP 44.08 \0.01

NC ? PS 2.71 0.12 NC ? PS 6.52 0.03 NC ? PI 96.50 \0.01 NC ? PI 140.78 \0.01

NC ? NP 2.80 0.11 NC 20.29 \0.01 NC 132.66 \0.01 NC 142.87 \0.01

(b) Dispersal ability = 50 m

NC 0.00 0.51 NC ? NP 0.00 0.86 NC ? NP 0.00 1.00 NC ? PS 0.00 1.00

NC ? PI 1.78 0.21 NC ? PI 3.92 0.12 NC ? PS 67.21 \0.01 NC ? NP 39.63 \0.01

NC ? NP 2.44 0.15 NC ? PS 7.54 0.02 NC ? PI 88.85 \0.01 NC ? PI 143.80 \0.01

NC ? PS 2.75 0.13 NC 19.20 \0.01 NC 126.68 \0.01 NC 145.91 \0.01

(c) Dispersal ability = 200 m

NC 0.00 0.48 NC ? NP 0.00 0.94 NC ? NP 0.00 1.00 NC ? PS 0.00 1.00

NC ? NP 1.61 0.21 NC ? PI 5.65 0.06 NC ? PS 50.55 \0.01 NC ? NP 30.54 \0.01

NC ? PS 1.89 0.19 NC ? PS 9.70 0.01 NC ? PI 73.70 \0.01 NC ? PI 154.12 \0.01

NC ? PI 2.66 0.13 NC 17.15 \0.01 NC 109.30 \0.01 NC 155.46 \0.01

(d) Dispersal ability = 500 m

NC 0.00 0.50 NC ? NP 0.00 0.89 NC ? NP 0.00 1.00 NC ? PS 0.00 1.00

NC ? NP 1.90 0.19 NC ? PI 4.45 0.10 NC ? PS 27.86 \0.01 NC ? NP 33.80 \0.01

NC ? PS 1.97 0.19 NC ? PS 8.69 0.01 NC ? PI 50.87 \0.01 NC ? PI 139.50 \0.01

NC ? PI 2.76 0.13 NC 13.89 \0.01 NC 82.72 \0.01 NC 139.55 \0.01

(e) Dispersal ability = 1000 m

NC 0.00 0.54 NC ? NP 0.00 0.79 NC ? NP 0.00 1.00 NC ? PS 0.00 1.00

NC ? NP 2.32 0.17 NC ? PI 3.01 0.18 NC ? PS 12.64 \0.01 NC ? NP 30.38 \0.01

NC ? PS 2.40 0.16 NC ? PS 6.97 0.02 NC ? PI 32.13 \0.01 NC ? PI 78.66 \0.01

NC ? PI 2.78 0.13 NC 10.46 \0.01 NC 58.82 \0.01 NC 79.40 \0.01

(f) Dispersal ability = 3000 m

NC 0.00 0.57 NC ? NP 0.00 0.67 NC ? PS 0.00 0.66 NC ? PS 0.00 1.00

NC ? NP 2.75 0.14 NC ? PI 2.00 0.25 NC ? NP 1.37 0.34 NC ? NP 29.16 \0.01

NC ? PI 2.79 0.14 NC ? PS 5.22 0.05 NC ? PI 14.37 \0.01 NC 53.03 \0.01

NC ? PS 2.79 0.14 NC 5.96 0.03 NC 26.77 \0.01 NC ? PI 54.35 \0.01

Analyses were carried out separately for six species varying in dispersal ability (10, 50, 200, 500, 1000 or 3000 m) within four

scenarios of native cover ([50, 50–30, 30–10, \10 %). AICc Akaike information criterion corrected for small ratio sample size/

number of parameters, Di = AICci - minimum AICc, wi Akaike weight, NC percentage of native cover, NP number of patches, PS

patch size, PI patch isolation
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Rubio 2010). The stronger effects of patch size at very

low habitat levels support the predictions of the

Fragmentation Threshold model (Andrén 1994), but

apparently are in disagreement with predictions of the

Regime Shift model (Pardini et al. 2010). This

apparent discrepancy probably reflects the different

response variables considered, habitat availability (our

study) versus abundance and richness in Pardini et al.

(2010). Habitat availability may change continuously

with habitat loss, but species persistence is more likely

to exhibit thresholds in habitat amount, below which

the population cannot sustain itself even though some

habitat is available (With and King 1999; Fahrig 2001,

2003).

In landscapes with intermediate (50–30 %) and low

(30–10 %) native cover, the number of patches, in

addition to NC, was the main determinant of habitat

availability for almost all species. Based on the

Fragmentation Threshold and the Regime Shift mod-

els, we had expected strong effects of patch size and

isolation in these landscapes, but such effects were

restricted to the more mobile species (see next

paragraph). In landscapes with less than 50 % of

native cover, the number of patches was always

positively related to patch isolation and negatively

related to patch size (see ‘‘Methods’’). For this reason,

the number of patches is likely to combine both patch

size and isolation in a single metric, being a more

plausible factor than either patch size or isolation

alone. Most previous studies of habitat fragmentation

ignored the potential effects of the number of patches

on biodiversity, focusing only on the size and isolation

of patches. This is probably due to the great influence

of the Theory of Island Biogeography (MacArthur and

Wilson 1967) on landscape ecology, and to the focus

of researchers on the patch rather than the landscape

scale to assess fragmentation effects (Fahrig 2003).

Pardini et al. (2010) detected patch size effects in

landscapes with 30 % of native vegetation cover, and

suggested that the appearance of such effects may

indicate the beginning of a regime shift in biodiversity.

Based on our findings, the negative effect of the

number of patches can also be considered a warning

signal for potentially dangerous fragmentation effects,

which can already be recognized in landscapes with

native vegetation cover as high as 50–30 %. Such

effects are exemplified by Martensen et al. (2012),

who documented the higher loss of bird specialist

species at landscapes with 50–30 % of forest cover.

Habitat availability increased as species’ dispersal

abilities increased, in accordance with Saura and

Rubio (2010). Despite this, the different species were

usually affected by the same set of landscape

attributes, although to different extents as mentioned

previously. This was clearly the case for landscapes

with high ([50 %) native cover, when all species were

affected only by native cover, and for landscapes with

very low (\10 %) cover, when all species responded

to native cover in addition to patch size. In the

remaining landscapes, all species responded to native

cover in addition to number of patches, but the more

mobile species (3000 m) also responded to patch

isolation in landscapes with intermediate cover

(50–30 %) and mainly to patch size in landscapes

with low cover (30–10 %). The effects of patch

isolation are evident only for this species in landscapes

with intermediate native cover (50–30 %) probably

because its dispersal ability (3000 m) is similar to the

mean distance among all patches in such landscapes

(3350.13 SD ± 1233.63 m). This mean distance is

higher than the dispersal abilities of the other species

(B1000 m), which are thus less likely to be affected

directly by patch isolation. The effects of patch size on

the more mobile species, in landscapes with low cover

(30–10 %), probably reflect the high contribution of

the flux fraction of the PC index; this contribution

generally increases as dispersal abilities of species

increase (Saura and Rubio 2010). Because the more

mobile species can reach most patches, their sizes are

the main determinant of the amount of flux they

receive, thus strongly affecting habitat availability. It

is important to remember that dispersal abilities are

usually correlated with other functional traits of

species, especially home range, geographic range size

and body size (Whitmee and Orme 2013), which affect

minimum area requirements and functional connec-

tivity (Henle et al. 2004; Vetter et al. 2011), potentially

impacting habitat availability.

Implications for conservation and restoration

Our results indicate that the effectiveness of different

management actions is likely to vary depending on the

amount of native vegetation cover in the landscape, as

proposed previously (Gardner et al. 2009; Pardini et al.

2010). Specifically, management actions intended to

increase the number, size or proximity of habitat

patches will probably vary in their effects on habitat
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availability, depending on the amount of native

vegetation cover in the landscape. This is a critical

finding given that the resources for conservation are

always limited and should be allocated using the best

strategy (Sarkar and Illoldi-Rangel 2010; Crouzeilles

et al. 2013). Our analyses also suggest that, for a given

amount of habitat, species with different dispersal

abilities will respond in a same direction, although to

different extents, by modifications in a given attribute

of landscape configuration, potentially facilitating

decision making.

In landscapes with high native cover, conservation

efforts should be directed to maintaining what is left,

especially by implementing large reserves. We need to

retain within landscapes as much native vegetation as

possible to guarantee a high and similar amount of

available habitat for species with different dispersal

abilities. In such landscapes, restoration actions should

receive less priority, because it is more efficient to

prevent rather than to repair the effects of habitat loss

and fragmentation (Rodrigues et al. 2009). For land-

scapes with less than 50 % of native vegetation cover,

conservation actions must be complemented with

restoration actions. In landscapes with intermediate

and low native cover, restoration should focus on

reconnecting habitat patches to reduce their number

and isolation (also indirectly increasing their mean

size), thus reducing fragmentation levels and increas-

ing habitat availability. This could be achieved, for

example, through the creation of habitat corridors

(Chetkiewicz et al. 2006). Such actions are funda-

mental because the effectiveness of management

interventions is probably higher in landscapes with

around 30 % of native vegetation cover (Pardini et al.

2010). In landscapes with very low native cover, the

focus should be on habitat restoration to increase the

amount of cover at the landscape scale. Managers

must attempt to enlarge patches to increment habitat

availability, allowing larger populations to be main-

tained within patches, thus reducing the chance of

local extinction (Bender et al. 1998; Bowman et al.

2002).
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SOS Mata Atlântica, INPE (2010) Atlas dos remanescentes
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