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Abstract
Ashumanity’s demand for resources continues to rise and productive arable lands become increasingly
scarce,manyof Earth’s remaining intact regions are at heightened risk of destruction fromagricultural
development. In situationswhere agricultural expansion is inevitable, it is important tomanage intact
landscape transformation so that impacts on environmental values areminimised.Here, wepresent a
novel, spatially explicit, land use planning framework that addresses the decisionmakingneeded to
account for different, competing economic-environment objectives (agricultural production value,
biodiversity conservation, ecosystemservice retention)when landuse change is inevitablewithin an
intact landscape.We apply our framework to the globally significant savannahs of theOrinoquia
(Colombia), which in a post-conflict era is under increased agricultural development pressure.We show
thatwhile negative environmental impacts canbe reduced throughplanning, the total area of land
converted to agriculture is the unavoidable principal driver of biodiversity and ecosystemservice loss.
We therefore identify planning solutions that performwell across all objectives simultaneously, despite
trade-offs among them.When 15%, 20%, 30%and40%of the study area is allowed tobe converted to
agriculture, on average planning can improve species persistence and ecosystem service retentionbyup
to 16%, 15%, 12%, and 9%, respectively,when compared to agricultural-focused solutions.
Development in the region so far has had anunnecessarily large impact on environmental objectives due
to a lack of effective landuse planning, creating an ‘opportunity debt’. Our study provides an evidence
base to informproactive planning and the development of environmentally sensible agricultural
development policy andpractice in the region. This framework can beusedby stakeholders to achieve
agriculture expansion goals andmaximise economic profit whileminimising impacts on the
environment in theOrinoquia, or any relatively intact region that is being developed.

Introduction

With almost 40% of Earth’s land surface transformed
by farming activity (Clark and Tilman 2017), agricul-
ture is the single largest contributor to biodiversity loss

to date (Dudley and Alexander 2017) and considered
as one of themain drivers of potential biodiversity loss
in the near future (IPBES 2019). Global agricultural
activity has also resulted in at least 133bn tonnes of
sequestered soil carbon loss to the atmosphere
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(Sanderman et al 2017), and accounted for approxi-
mately 70% of the world’s freshwater withdrawals for
anthropogenic use (Rosegrant et al 2009). The con-
tinued expansion of agricultural activity is driving the
pace of Earth’s continually changing terrestrial human
footprint (Venter et al 2016), and is a fundamental
reason for growing calls to conserve those last remain-
ing ecologically intact landscapes, given their increas-
ing importance for biodiversity and ecosystem service
provision, and their disproportionately high ecological
value in a time of climate change (Martin and
Watson 2016, Scheffers et al 2016, Pimm et al 2018,
Dinerstein et al 2019). Yet global demands for food,
and the economic opportunities that agriculture pre-
sents to developing nations mean that many of Earth’s
remaining intact ecosystems are under significant
threat from agricultural expansion (Vargas et al 2015,
Morán‐Ordóñez et al 2017, Potapov et al 2017,
Roucoux et al 2017). This is further exacerbated by the
fact that productive arable lands are becoming increas-
ingly scarce, so farmers must continually encroach
into intact places (Lambin and Meyfroidt 2011, Bijl
et al 2017).

When a landscape that is largely ecologically intact
is being ‘opened up’ for development, strategic, proac-
tive planning is needed to identify opportunities for
enhanced outcomes for both environmental and agri-
cultural goals (Forman and Collinge 1997). Systematic
planning can help guide complex land-use decisions
by fostering stakeholder engagement, improving the
efficiency of land use allocation, describing the trade-
offs between biodiversity and economic objectives
thereby identifying compromise solutions and, identi-
fying management opportunities and strategies that
can improve biodiversity outcomes in production
landscapes (Polasky et al 2008, Runting et al 2015,
Adams et al 2016, Estes et al 2016, Runting et al 2019,
Strassburg et al 2019). However, to date, these efforts
typically have been conducted in transformed (i.e.
fragmented) landscapes, in contexts where the envir-
onmental goal is to maximise biodiversity and envir-
onmental service gain (via restoration or strategic
protection). Here, building on this work, we develop a
quantitative, multi-objective land use planning frame-
work that allows for a spatially explicit assessment of
likely impacts of land use change on environmental
values including biodiversity conservation, carbon
storage and water retention and one that, by adjusting
the relative weights among objectives, is able to mini-
mise the loss of these values while ensuring production
value fromdevelopment can bemaintained.

We apply our framework to the relatively intact
Llanos (plains) of the Orinoco region of Colombia.
The country has recently emerged from 50 years of
civil conflict, largely with the militia group FARC (the
Revolutionary Armed Forces of Colombia) who, in
2016, signed a peace treaty with the government of
Colombia (Gobierno Nacional de Colombia 2016,
Salazar et al 2018). This treaty has opened economic

opportunities, with undeveloped or intact lands that
were previously off-limits such as the Orinoquia now
being targeted for agricultural expansion (DNP 2018).
The tropical climate and grass-covered expanses of
mostly flat land, make it an ideal location for agri-
cultural expansion, and it is increasingly the focus of
livestock, forestry, soy, rice and palm oil industries
(López-Ricaurte et al 2017).

We assess the impacts of the conversion of native
vegetation to agriculture on biodiversity (species per-
sistence and ecosystem representation) and ecosystem
services (water provision and carbon sequestration),
describe the trade-offs between environmental and
agricultural objectives, the trade-offs among environ-
mental objectives, and assess the effectiveness of the
current distribution of land uses. In doing so, we pro-
vide an evidence base to inform proactive planning for
environmentally sensible agricultural development
policy and practice in the region. Our planning frame-
work is flexible and can be translated to any intact
region that is undergoing development, and where the
goal is to maximise economic gains while simulta-
neouslyminimising loss of environmental values.

Methods

Study region
The Orinoquia is located in the eastern part of
Colombia, covering 255 123 km2 or approximately
26% of the country (figure 1) and contains 36
ecosystem types that span dense forests, gallery forests,
wetlands and the dominant tropical grassland savan-
nahs (Llanos) (Lasso et al 2010, Etter et al 2017). The
Llanos of the Orinoquia is one of the most important
reservoirs of biodiversity in the Neotropics
(Gassón 2002), but agricultural development is a key
objective of the National Planning Department of the
Colombian government (Gassón 2002, DNP 2018).
Currently, 12% of the Orinoquia’s natural landscape
has been converted to agriculture and associated
urbanisation. The most extensive land use is cattle
grazing on natural savannah grasslands. However,
agricultural activities such as oil palm cultivation have
become lucrative industries in the region in part due to
government incentives (Vargas et al 2015), and are
foreseen to continue expanding (Castiblanco et al
2013). Five major forms of agriculture likely to
influence the future of the region include livestock,
palmoil, forestry, rice, and soy (DNP2014).

Framing the decision support problem

The objective of our formulation is to optimise the
allocation (areal expansion) of livestock, oil palm,
forestry, rice, and soy ‘zones’within the region in order
to maximise agricultural production value (USD yr−1)
while minimising impacts on biodiversity, quantified
in terms of species persistence and ecosystem
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representation (Watson and Venter 2017, Dinerstein
et al 2019), and ecosystem services, quantified in terms
of water loss (l yr−1) and carbon loss (t). As the study
area is currently largely undeveloped, there is an
implicit sixth zone, natural vegetation. Existing urban
and mining land (234 km2) and formally protected
areas (83 586 km2) within the study area are not
permitted to be converted to agricultural land use.
Agricultural gains are estimated as the potential
production value for each commodity, adjusted in
accordancewith the estimated yield for each commod-
ity and by transportation cost (Estes et al 2016, SM 1.2
is available online at stacks.iop.org/ERL/15/014001/
mmedia).

We use a land cover map based on the Institute of
Hydrology, Meteorology and Environmental Studies
(IDEAM) land cover map (IDEAM 2010), updated
with relevant agricultural land use classes from an eco-
systemmap containing finer detailed agricultural data
(IDEAM, Instituto Humboldt, IGAC, INVEMAR,
MADS 2015). These maps are the most up to date and
comprehensive land use/land cover maps that cur-
rently exist for the region. We assign these to a set of
1 km2 planning units (n=247 790)which we identify
as natural ecosystems (n=129 765), pasture for live-
stock (n=30 935), oil palm (n=1913), forestry
(n=269), rice (n=1087), soy (n=1), protected
areas (n=83 586) or urban/mining areas (n=234)
(SM1.8).

Species persistence benefit is based on mammal,
bird and reptile species that were either (i) savannah
habitat specialists, (ii) endemic to the Orinoquia, or

(iii) had an International Union for Conservation of
Nature categorisation of near threatened, vulnerable,
endangered or critically endangered. We select these
species groups to represent the faunal assemblages
within savannah ecosystem types, that are unique to
the Orinoquia and are already threatened (SM 2 table
S2.1). We use range maps for these 145 species to
determine which species benefited from conservation
within each planning unit. Species benefit, summed
across all species following Strassburg et al (2019), is
quantified as local extinction risk, which is based on
the ratio of the remaining and original habitat area for
each species within the study area (sensu Thomas et al
2004, Strassburg et al 2019; SM1.3).

Beyond reducing local species extinction risk, we
adopt a retention target of 50% of historic extent
(defined as the potential extent of a given ecosystem if
it was left uninfluenced by anthropogenic activity; SM
table S3.2) for each natural ecosystem type of the
region (Etter et al 2017) to ensure the persistence of a
diverse range of natural habitats for species assem-
blages, ecological process and provisioning services
(Pressey et al 2003, Loreau et al 2006). We choose 50%
because this threshold of habitat loss has been broadly
identified as the point at which species extinction risk
dramatically increases in intact systems (Noss et al
2012, Pimm et al 2014, Baillie and Zhang 2018). Eco-
systems that already had<50% of their historic extent
lost were given a retention target of 100% of the
remaining habitat.

Our optimisationmodel includes objectives repre-
senting the averted loss of carbon and hydrological

Figure 1.The boundary and current simplified land use of our study region in theOrinoquia, Colombia. It is defined by the four
departments thatmake up the region,Meta, Casanare, Arauca, andVichada.We divide this area into n=2477 901 km2 planning
units.
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ecosystem service value of each planning unit. Carbon
value is quantified as soil organic carbon stocks (SOC)
up to 30 cm in depth (t km−2; SM 1.4) as conversion to
agricultural land uses would result in losses of carbon
within this stratum (Assad et al 2013, Yigini et al 2018)
that are difficult to restore (Zinn et al 2005, Sommer
et al 2018). Following Egoh et al (2008), hydrological
value is quantified as water runoff (l yr−1 per hydro-
logical unit), which reflects geomorphic and hydro-
logical processes including land cover, precipitation,
evapotranspiration, soil moisture, and recharge (per-
colation). Our estimations are based on the hydro-
logical models of Thomas (1981) and Angarita et al
(2018) (SM 1.5). Conversion to agricultural land use
diminishes water provision due to water demands of
livestock and crops (Power 2010). Therefore, we
assume if a natural area is converted to agriculture,
that planning unit’s carbon and hydrological value
does not contribute to environmental objectives.

We formulate this as a mathematical optimisation
problem (specifically an integer linear programming
problem) and solve it usingGurobi version 8.1.0 (Gur-
obi Optimisation 2019). See SM 1.1 for mathematical
formulation andmore details.

Scenario analysis

We explore scenarios that allow thresholds of natural
ecosystem conversion of 15% (38 269 km2), 20%
(51 025 km2), 30% (76 538 km2) and 40% (102 050
km2) of the landscape, inclusive of areas already
cleared (12% of region) using our optimisation frame-
work (figure 2). These thresholds of conversion are
politically relevant as analogous ecosystems have lost
similar, and higher, amounts of native vegetation
cover (for example, the Brazilian Cerrado has lost
46%) (Strassburg et al 2017). For each threshold of
total natural ecosystem loss, we evaluate three scenar-
ios to assess the impacts of land conversion. Trade-offs
among objectives are quantified for each scenario by
evaluating a range of relative weights between agricul-
tural and environmental objectives, solving the optim-
isation problem each time to obtain a spatially explicit
‘solution’. Trade-off curves are, therefore, described
by a set of solutions, each of which represents a
different weighted sum of objectives. These trade-off
curves are the lines presented infigure 3.

In the first scenario, we assume agricultural lands
are fixed and cannot change to a different land use.
The trade-off between agricultural and combined
environmental objectives (a composite metric that
weights species persistence, carbon sequestration and
water retention equally) is quantified among solu-
tions. In the second scenario, agricultural lands are
again fixed, and the trade-off between agricultural
objectives and single environmental objectives is
quantified among solutions separately (rather than
with a composite metric) for species persistence,

carbon sequestration, and water retention. Ecosystem
retention targets are not considered here but were
considered in all other scenarios. The third scenario is
an extension of thefirst, where lands already converted
to agriculture are allowed to be allocated to other use
types and the trade-off between agricultural and envir-
onmental objectives are again quantified using the
composite environmentalmetric (table 1).

Results

Impacts of different thresholds of natural ecosystem
loss across scenarios
We found that all future loss of natural ecosystems to
agriculture will be positively associated with agricul-
tural production value, and negatively associated with
biodiversity persistence, and ecosystem service reten-
tion (table 2,figures 3, 6).

Within a given land conversion threshold, we
quantify the trade-off between agricultural production
value, species persistence and ecosystem service loss
(figure 3). Compromise solutions (solutions that
balance agricultural and environmental objectives
through equal (0.5:0.5) weighting) achieve on average
95.9%, 96.6%, 96.3% and 96.7% of maximum pro-
duction value in the 15%, 20%, 30% and 40% land
conversion thresholds while reducing negative
impacts on species and ecosystem service retention by
on average 9.84%, 9.22%, 6.85% and 5.85%, respec-
tively. Hence, the magnitude of possible reductions in
environmental impacts for a given threshold of land
conversion is relatively small compared to the differ-
ences among thresholds of areal land conversion
(figure 3). In other words, while negative environ-
mental impacts can be reduced through planning, the
reduction is small relative to the impacts of the loss of
natural ecosystems.

Relationship between combined environmental and
agricultural objectives
The trade-offs between combined environmental and
agricultural objectives indicate that it is possible to
achieve gains for species, carbon, and water, with
minimal reduction in agricultural benefit through
spatial planning, but more so at lower land conversion
thresholds (figure 3—solid lines). We found that at
higher thresholds of loss, there is less opportunity to
reduce negative impacts on the environment (table 3
—Scenario i). Additionally, there is more opportunity
to reduce negative impacts on water retention and
carbon sequestration than to species persistence
(table 3—Scenario i,figure 3—solid lines).

Relationship between single environmental and
agriculture objectives
Trade-offs between single environmental objectives
(species persistence, carbon sequestration and water
retention) and agricultural objectives are exacerbated
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when planning for each one independently rather than
simultaneously (table 3—Scenario ii, figure 3—dotted
lines; figure 4). Therefore, potential realised gains for
each environmental objective are higher than those
that consider species persistence, carbon sequestration
andwater retention simultaneously (table 3,figure 3—
solid lines and dashed lines which represent a compo-
site environmental metric where all objectives are
weighted equally versus dotted lines which optimise
for single environmental objectives). Intuitively,
the environmental objectives not accounted for in
these scenarios performed worse (SM 4). This is
reflective of the trade-offs that exist among environ-
mental objectives at all conversion thresholds (SM 1.6,
SMfigure S1.2).

Spatial allocations of land use differ greatly
between solutions. When optimising for water reten-
tion future agricultural land is concentrated to the
north (figure 5(a)), more scattered when optimising
for carbon (figure 5(b)), and spread more south for
species persistence (figure 5(c)). When optimising for
only agricultural production value, converted lands
are largely restricted to the north–west of the region
(figure 5(d)).

Effectiveness of current land use configuration
The ‘can transition’ scenarios lead to, on average
across solutions, 18 350 km2 or 54% of land that is

currently agriculture to change to a different land use
(either a different agricultural type, or to be allocated
to the ‘natural’ zone). Future agricultural and environ-
mental objectives can be better achieved when lands
that are currently agriculture are allowed to transition
to another land use type (figure 3—dashed lines
representing ‘can transition scenarios’), compared to
when they cannot (figure 3—solid lines representing
‘fixed scenarios’). The difference between the two
scenarios were on average $316, $402, $868, and $1999
million USD yr−1, 0.13, 0,14, 0.12 and 0.22 expected
local extinctions, 0.03, 0.03, 0.04 and 0.01 million t of
SOC loss, and 2.72, 2.80, 2.57 and 1.39 trillion l of
water loss yr−1 at the 15%, 20%, 30% and 40% land
conversion thresholds. This indicates that the current
distribution of land uses does not represent optimal
solutions for maximising benefits towards agricultural
production value, species persistence, carbon seques-
tration orwater retention.

Ecosystem retention across scenarios
All ecosystem retention targets, which are applied as a
constraint within the objective function, can never be
met in situations where current agricultural lands are
fixed. In the 15%, 20%, 30%, and 40% land conversion
thresholds targets cannot be met for 2, 3, 3, and 5
ecosystems respectively (SM 3 table S3.3). These are
associated with two endangered savannah ecosystem

Figure 2.Methodological flowdiagramof the input data, targets, andweighting requirements used to develop exact spatially explicit
land use solutions solved usingGurobiOptimizer version 8.1.0 (GurobiOptimization 2019). Datasets were continuous rasters for
agricultural production value (n=5), water run-off (n=1), soil organic carbon stocks (n=1) and binary present/absent range
maps for species (n=145), and ecosystems (n=36). Agricultural objectives are represented in red and environmental objectives in
green.
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types, and two endangered and one vulnerable dense
forest ecosystem. This is because, due to the current
distribution of land use types new expansion is forced
into certain ecosystems that it otherwise would not be,
were agricultural lands allowed to be re-allocated. In
the scenario where existing agricultural land is free to
transition to another type, all targets aremet.

For confidence intervals for all solutions see SM4.

Discussion

This analysis represents a rare and important opportu-
nity to apply an evidence-based approach for simulta-
neously informing development and conservation
planning in an intact and biodiverse area that is in the
process of becoming developed. We found that devel-
opment so far has had an unnecessarily large impact

Figure 3.Trade-off curves between total agricultural production value (x axis) and (a) expected increase inmeannumber of local
extinctions (number of extinctions), (b) carbon loss (million t) and (c)water loss (trillion l yr−1)when allowing varying thresholds of
the study region’s natural ecosystems to be converted to agriculture. Points on the trade-off curves represent planning solutions that
reflect different weights among objectives. The lower-right portion of each curve represents solutionswhere improvements to
environmental objectives can bemadewithminimal impact on production value. Flat trade-off curves indicate scenarios inwhich
large reductions in production value only result in small improvements to ecosystem service benefits. Solid lines represent the scenario
where current agricultural landsmust remain agriculture, dotted lines represent the single environmental objective scenario, and
dashed lines indicate the scenariowhere agriculture is allowed to transition to a different state. Spatially explicit solutions (d)–(f) at
different weightings between agricultural benefit and combined environmental valuewithin a scenario that allows approximately 20%
of the study region to be converted to agriculture. Thoseweightings are (d) 1:0weighted towards agricultural objectives□, (e) 0.5:0.5
equal weighting between objectives * and (f) 0:1weighted towards environmental objectives●.
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Table 1.Description of the three scenarios evaluated.Where a dash (–) is present, a range of values were assessed to describe the trade-off
curves (presented infigure 3). In every scenario presented here, agricultural expansion targets are equally divided between the respective
threshold of loss.

Scenario Scenario i Scenario ii Scenario iii

Description Solutions that describe the trade-

off between agricultural and com-

bined environmental objectives

Solutions that describe the trade-

off between agricultural objectives

and single environmental

objectives

Evaluate the effect of allowing

land already converted to

agriculture to be allocated to other

use types or back to a natural state

in scenario i

Purpose To identify a suite of compromise

solutions that consider both

agricultural and environmental

objectives across a range of

weightings. To assess the impact

of different thresholds of

conversion on all objectives

To identify the best and

worst-case solution for each

individual environmental objec-

tive, and the suite of compromise

solutions in between. To assess the

impact of different thresholds of

conversion on all objectives

To assess the effectiveness of the

current distribution of land uses

in terms of both agricultural and

environmental objectives. To

assess the impact of different

thresholds of conversion on all

objectives

Thresholds of

conversion

15%, 20%, 30%, 40% 15%, 20%, 30%, 40% 15%, 20%, 30%, 40%

Agricultural weight

range

0–1 0–1 0–1

Overall environmental

weight range

1–0 1–0 1–0

Weights among

environmental

objectives

• Minimise local species

extinctions (0.33)
• Minimise local species

extinctions (0 or 1)
• Minimise local species

extinction risk (0.33)

• Minimise carbon loss (0.33) • Minimise carbon loss (0 or 1) • Minimise carbon loss (0.33)

• Minimise water loss (0.33) • Minimise water loss (0 or 1) • Minimise water loss (0.33)

Can existing agricultural

lands change?

No No Yes

Are ecosystems

considered (at 50%
retention target)

Yes No Yes

Shown in Figure 3, solid lines Figure 3, dotted lines Figure 3, dashed lines

Table 2.Average values of solutions across all scenarios at each threshold of natural ecosystem conversion.

Threshold of natural

ecosystem conversion

Total production value

(millionUSD$ yr−1)
Carbon

loss (Mt)
Water loss

(Tl yr−1)
Local extinction risk

(no. species)
Average loss of each

ecosystem

15% $6,223 1.32 52.8 7.05 10.7%

20% $8,137 1.79 70.5 9.55 12.1%

30% $11,626 2.80 106 14.8 15.8%

40% $14,731 3.87 144 20.9 22.8%

Table 3.Percentage increase between the agricultural-focused (which refers to aweighting in the objective function of 1:0 towards
agriculture) and the environmental-focused solutions (which refers to aweighting in the objective function of 0:1 towards overall
environmental objectives). Values are for the scenario that considers combined environmental objectives (scenario i; differences between
either end of the trade-off curves presented infigure 3—solid lines) and for the scenario that considers single environmental objectives
(scenario ii; differences between either end of the trade-off curves presented infigure 3—dotted lines).

Scenario i Scenario ii

Threshold of nat-

ural ecosystem

conversion

Increase in

carbon

loss (Mt)

Increase in

water loss

(Tl yr−1)

Increase in local

extinction risk

(no. species)

Increase in

carbon

loss (Mt)

Increase in

water loss

(Tl yr−1)

Increase in local

extinction risk

(no. species)

15% 9.05% 10.3% 6.52% 15.8% 15.4% 17.2%

20% 8.93% 7.93% 3.30% 14.6% 13.9% 15.2%

30% 8.15% 4.32% 1.16% 12.9% 9.45% 12.3%

40% 4.29% 4.98% 4.13% 10.8% 6.24% 9.34%
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on biodiversity and ecosystem services outcomes
(figure 3—solid ‘fixed scenarios’ versus dashed lines
‘can transition scenarios’) and as such, an ‘opportunity
debt’ has been created, where important opportunities
to take advantage of land use allocation to the benefit
of economic profit and environmental objectives were
missed. We show that through the use of our multi-
objective optimisation framework to inform planning,
we can address this debt and ensure better future
outcomes can be achieved with respect to both
agricultural production value and environmental
values (figure 3).

The fundamental landmanagement decision to be
made is what proportion (or conversion threshold) of
the landscape should be permitted to be converted to
agriculture. This threshold had the strongest influence
on both agricultural production benefit and loss of
biodiversity and ecosystem services (table 2, figure 3).
For a given threshold of total land conversion, our spa-
tially explicit planning framework provides important
opportunities to minimise impacts on biodiversity
and ecosystem services while maintaining high pro-
duction values. Within the Orinoquia, planning can
reduce some of the negative impacts that development
has on species and ecosystem persistence, carbon
sequestration and water provision, at all thresholds of
conversion. As the proportion of the landscape that is
converted increases, there appear to be diminished
opportunities to mitigate these impacts (figure 3,
table 3).

Our analysis indicates that it is not possible to
maximise the performance of planning solutions
against all three environmental objectives simulta-
neously, and trade-offs exist among them (figure 3—
dotted lines ‘single environmental objective scenario’
versus solid lines ‘fixed/combined environmental sce-
narios’, SM 1.6), indicating that land use planners
must carefully consider the relative importance of
each objective. However, we have identified planning
solutions that represent a compromise between these
environmental objectives. The relative importance of
the objectives can be readily adjusted to reflect the
values of different decision-makers and stakeholders.

Greater protection of ecosystem service provision
can be made if some areas that are currently agri-
culture are restored to a natural state (figure 3—solid
‘fixed scenarios’ versus dashed lines ‘can transition
scenarios’). Grazing lands within the region are
stocked at low density and many have not been
severely degraded (Smith et al 1997), therefore some
areas are likely amenable to restoration with good
potential for recovery of ecosystem function and rela-
tively minor impact on agricultural production (Usma
and Trujillo 2011). In addition to protected area plan-
ning, activities that restore or prevent deterioration of
lightly degraded lands, such as low density grazing
lands, should be considered. Obstacles to ecosystem
restoration associated with de facto land ownership
may require government intervention in the form of
incentive programs, such as payment schemes for eco-
system services, and enforcement in legally protected

Figure 4.The expectedmean number of local extinctions in solutions based solely on species persistence objectives (light) or
agricultural objectives (dark). Error bars represent the 95% confidence intervals of themean number of extinctions.
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areas. The current distribution of agricultural lands
prevents meeting ecosystem representation targets for
2, 3, 3, and 5 ecosystems in the 15%, 20%, 30%, and
40% land conversion thresholds respectively (see SM 3
table S3.3). Conservation planning for these ecosys-
tems should prevent further loss of native vegetation
and consider restoration of low productivity agri-
cultural lands. It is important to consider both species
and ecosystem representation as planning for one does
not necessarily account for the other (Polak et al 2015).

This analysis can inform two major current policy
initiatives in Colombia. The National Agricultural
Frontier (Frontera Agricola Nacional) is a national
government-defined agricultural zone, which aims to
guide the formulation of public policy, focus and
enhance investments and management of the agri-
cultural and rural development sector, promote effi-
cient use of land, streamline social ordering of the
rural property, and contribute to stabilizing and redu-
cing the loss of ecosystems of environmental impor-
tance by dictating where agriculture should and
should not expand (MADR 2016). While excluding
protected areas and some forested ecosystems, the full

development of this zone would be associated with a
conversion threshold of approximately 75% in the
Orinoquia, which our analysis indicates would be
associated with large losses of biodiversity and ecosys-
tem service values. While the results of our study can-
not determine the maximum threshold of land
conversion that should be permitted, as this depends
on the values of national and regional stakeholders,
our framework and results can inform this decision by
providing an objective, transparent, evidence-based
approach to assessing the consequences of different
thresholds of conversion, and inform decisions about
compromises between agricultural development and
environmental protection. The second policy initia-
tive is ZIDRES (Areas of Interest for Rural, Economic
and Social Development), which supports agricultural
development projects within government-defined
rural zones across Colombia (El congreso de Colom-
bia 2016). Although the ZIDRES initiative still lacks
explicit expansion targets and environmental objec-
tives (beyond the criteria that environmental sustain-
ability must be considered), the zones cover 37% of
the Orinoquia and our framework could be used

Figure 5. Spatial allocation of livestock (fluro green), oil palm (red), forestry (orange), rice (blue), soy (pink) and natural or
unconverted lands (light green)when allowing 20%of the landscape to be lost to agriculture when planning for (i.e. the best-case
solution for) (a)water retention, (b) carbon sequestration, (c) species persistence, and (d) agricultural production value. Protected
(dark green) and urban/mining areas remain stagnant as we assume no development can occurwithin them.
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within these to achieve development objectives (once
explicitly defined) while minimising the loss of envir-
onmental values.

The assumption that planning units converted to
agriculture provide no effective value to biodiversity is
warranted because, while there are exceptions, most of
the species considered are strongly dependent on
native savannah habitat, and agricultural lands when
intensely farmed may be unlikely to support sustain-
able populations of species (Fleischner 1994,
Alkemade et al 2013, Newbold et al 2015, Pardo et al
2018, 2019). Furthermore, we assume that once a
planning unit is converted to agriculture it contributes
no water to downstream regions, which we believe is
reasonable as most water resources would be allocated
to sustaining agriculture (Hanasaki et al 2010,
Power 2010). The assumption that there would be sig-
nificant SOC loss once an area is converted to agri-
culture is justified because this is a well-observed
outcome following land conversion and disturbance
(Zinn et al 2005, Klumpp et al 2009, Sommer et al
2018). Therefore, for the purpose of this analysis, we
assume that agricultural land uses contribute no value
to environmental objectives; however, future studies
might quantify and account for each land uses respec-
tive biodiversity, water, and carbon loss as compared
to the natural state. We also assume that protected
areas are effective at preventing ecosystem conversion.
However, illegal clearing of land is a substantial con-
cern in this region (Armenteras et al 2019), implying
that enforcement of protected areas will be essential
when implementing land use planning.

This work could be further advanced by consider-
ing the reduction in negative environmental impacts

or differences in yields that might occur through dif-
ferent intensities of farming or sustainable agricultural
practices such as promotion of traditional cattle-
ranching or Roundtable on Sustainable PalmOil certi-
fied palm oil. We have shown that loss can be reduced
through careful spatial allocation of land uses, and fur-
ther reductions not quantified here may come from
best practices. Additionally, we considered the entire
Orinoquia region as a whole, and defined agricultural
expansion targets for the entire region. However, dif-
ferent departments in the region sometimes behave
independently from one another. Implementation of
an Orinoquia-wide plan would require coordinating
revenue sharing among departments, perhaps through
a payment for ecosystem services framework, so that
regions in which protected areas are concentrated are
not penalised economically. We also do not account
for the additional cost of changing one land use to
another in the ‘can transition’ scenario, only the
potential production value of a parcel of land for a
given commodity. We included only five agricultural
commodities and have not considered the variations
in production value among producers that occur due
to the scale of farming practices. Our framework could
be further developed to include more commodities,
and economic data relating to scale of production and
the costs of transformation of crops to secondary
products.

Conclusion

For regions such as the Orinoquia where the loss of
intact ecosystems to agricultural expansion is inevita-
ble, development must be strategically planned in

Figure 6.The proportions of each of the region’s 36 ecosystems remaining among different land conversion thresholds (x axis) among
the scenarios where ecosystem retention targets were used. The baseline represents the average amount of each ecosystem that
currently remains.Horizontal lines represent the average proportion remaining at each threshold among all ecosystems.
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order to avoid unnecessary impacts on biodiversity
and ecosystem services. Given that the magnitude of
the impacts on biodiversity and ecosystem services are
driven primarily by targets for land conversion, the
key policy decision is what those targets should be.
Spatial planning can improve outcomes for species
persistence, ecosystem retention, carbon sequestra-
tion, water provision and agricultural production
value to avoid accrual of further opportunity debt that
exists due to previous unplanned expansion. The novel
spatially explicit, quantitative, multi-objective frame-
work presented here is designed to help decision-
makers solve the difficult challenge of meeting
development goals while minimising negative impacts
to the environment through strategic landuseplanning.
It differs from approaches which are typically designed
for transformed or fragmented landscapes, and can be
applied to any relatively intact environment that is being
opened up for development, where minimising loss of
core environmental values is a key objective.
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